摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

CCI-779 | 162635-04-3

中文名称
——
中文别名
——
英文名称
CCI-779
英文别名
(1R,2R,4S)-4-[(2R)-2-[(1R,9S,12S,15R,18R,19R,21R,23S,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate;[(1R,2R,4S)-4-[(2R)-2-[(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl] 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate
CCI-779化学式
CAS
162635-04-3
化学式
C56H87NO16
mdl
——
分子量
1030.3
InChiKey
CBPNZQVSJQDFBE-HGVVHKDOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    99-101°C
  • 沸点:
    1048.4±75.0 °C(Predicted)
  • 密度:
    1.21
  • 闪点:
    587.8℃
  • 溶解度:
    易溶于可溶于氯仿、甲醇。
  • 颜色/状态:
    White to off-white powder
  • 解离常数:
    No ionizable functional groups

计算性质

  • 辛醇/水分配系数(LogP):
    5.6
  • 重原子数:
    73
  • 可旋转键数:
    11
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.75
  • 拓扑面积:
    242
  • 氢给体数:
    4
  • 氢受体数:
    16

ADMET

代谢
主要由人类肝脏中的细胞色素P450 3A4代谢。同样有效的代谢物西罗莫司是人类静脉输注后的主要代谢物。在体外进行的坦西莫司代谢研究中观察到的其他代谢途径包括羟基化、还原和去甲基化。
Primarily metabolized by cytochrome P450 3A4 in the human liver. Sirolimus, an equally potent metabolite, is the primary metabolite in humans following IV infusion. Other metabolic pathways observed in <i>in vitro</i> temsirolimus metabolism studies include hydroxylation, reduction and demethylation.
来源:DrugBank
代谢
西罗莫司是替西莫司的活性代谢物,是人类静脉给药后主要的代谢物。其余代谢物在血浆中的放射性不到10%。
Sirolimus, an active metabolite of temsirolimus, is the principal metabolite in humans following intravenous treatment. The remainder of the metabolites account for less than 10% of radioactivity in the plasma.
来源:Hazardous Substances Data Bank (HSDB)
代谢
Temsirolimus 通过水解代谢为西罗莫司,后者是主要的活性代谢物。Temsirolimus 和西罗莫司均通过细胞色素 P-450(CYP)同工酶 3A4 进行代谢。尽管 Temsirolimus 被代谢为西罗莫司,但 Temsirolimus 本身具有抗肿瘤活性,并不被认为是一种前药。
Temsirolimus is metabolized by hydrolysis to sirolimus, the principal active metabolite. Both temsirolimus and sirolimus also are metabolized by cytochrome P-450 (CYP) isoenzyme 3A4. Although temsirolimus is metabolized to sirolimus, temsirolimus itself exhibits antitumor activity and is not considered a prodrug.
来源:Hazardous Substances Data Bank (HSDB)
代谢
体外代谢研究了替西罗莫司(雷帕霉素-42-[2,2-双-(羟甲基)]-丙酸酯),一种抗肿瘤药物,使用人肝微粒体以及重组人细胞色素P450酶,即CYP3A4、1A2、2A6、2C8、2C9、2C19和2E1。通过液相色谱-串联质谱(LC-MS/MS或MS/MS/MS)检测到15个代谢物。CYP3A4被确定为主要负责该化合物代谢的酶。与重组CYP3A4孵育的替西罗莫司产生了大多数与人肝微粒体孵育时检测到的代谢物,这些代谢物用于大规模制备。通过硅胶色谱后接着半制备反相色谱高效液相色谱,分离和纯化了单个代谢物,用于结构鉴定和生物活性研究。通过正负质谱(MS)和MS/MS光谱方法,将次要代谢物(峰1-7)鉴定为羟基化或去甲基化的巨环环开替西罗莫司衍生物。由于这些化合物不稳定且仅以微量存在,因此未进行进一步研究。通过结合LC-MS、MS/MS、MS/MS/MS和NMR技术,确定了六个主要代谢物为36-羟基替西罗莫司(M8)、35-羟基替西罗莫司(M9)、开环的11-羟基替西罗莫司(M10和M11)、N-氧化物替西罗莫司(M12)和32-O-去甲基替西罗莫司(M13)。与母体化合物相比,这些代谢物对LNCaP细胞增殖的活性显著降低。
The in vitro metabolism of temsirolimus, (rapamycin-42-[2,2-bis-(hydroxymethyl)]-propionate), an antineoplastic agent, was studied using human liver microsomes as well as recombinant human cytochrome P450s, namely CYP3A4, 1A2, 2A6, 2C8, 2C9, 2C19, and 2E1. Fifteen metabolites were detected by liquid chromatography (LC)-tandem mass spectrometry (MS/MS or MS/MS/MS). CYP3A4 was identified as the main enzyme responsible for the metabolism of the compound. Incubation of temsirolimus with recombinant CYP3A4 produced most of the metabolites detected from incubation with human liver microsomes, which was used for large-scale preparation of the metabolites. By silica gel chromatography followed by semipreparative reverse-phase high-performance liquid chromatography, individual metabolites were separated and purified for structural elucidation and bioactivity studies. The minor metabolites (peaks 1-7) were identified as hydroxylated or desmethylated macrolide ring-opened temsirolimus derivatives by both positive and negative mass spectrometry (MS) and MS/MS spectroscopic methods. Because these compounds were unstable and only present in trace amounts, no further investigations were conducted. Six major metabolites were identified as 36-hydroxyl temsirolimus (M8), 35-hydroxyl temsirolimus (M9), 11-hydroxyl temsirolimus with an opened hemiketal ring (M10 and M11), N- oxide temsirolimus (M12), and 32-O-desmethyl temsirolimus (M13) using combined LC-MS, MS/MS, MS/MS/MS, and NMR techniques. Compared with the parent compound, these metabolites showed dramatically decreased activity against LNCaP cellular proliferation.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
CYP3A4抑制剂:潜在的药代动力学相互作用(主要活性代谢物西罗莫司的血药浓度增加)。应避免与强效CYP3A4抑制剂同时使用;如果没有替代品,应考虑调整替西罗莫司的剂量。
CYP3A4 inhibitors: Potential pharmacokinetic interaction (increased plasma concentrations of the principal active metabolite sirolimus). Concomitant use with a potent CYP3A4 inhibitors should be avoided; if no alternative is available, consideration should be given to temsirolimus dosage adjustment.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
CYP3A4诱导剂:潜在的药代动力学相互作用(主要活性代谢物西罗莫司的血浆浓度降低)。应避免与强效CYP3A4诱导剂同时使用;如果没有替代品,应考虑调整坦西莫司的剂量。
CYP3A4 inducers: Potential pharmacokinetic interaction (decreased plasma concentrations of the principal active metabolite sirolimus). Concomitant use with potent CYP3A4 inducers should be avoided; if no alternative is available, consideration should be given to temsirolimus dosage adjustment.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
在同时使用血管紧张素转换酶(ACE)抑制剂治疗期间观察到血管性水肿型反应。建议谨慎。
Angioedema-type reactions observed during concomitant therapy with angiotensin-converting enzyme (ACE) inhibitors. Caution is advised.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
接受联合治疗的病人颅内出血风险增加。需谨慎。
Increased risk of intracerebral bleeding in patients receiving concomitant therapy. Caution is advised.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
替西罗利姆在1期和2期临床试验中已经给予癌症患者,通过重复静脉注射,剂量高达220 mg/m2。当替西罗利姆的剂量超过25 mg时,出现包括血栓、肠穿孔、间质性肺病(ILD)、癫痫和精神病的几个严重不良事件的风险增加。
Temsirolimus has been administered to patients with cancer in phase 1 and 2 trials with repeated intravenous doses as high as 220 mg/m2. The risk of several serious adverse events, including thrombosis, bowel perforation, interstitial lung disease (ILD), seizure, and psychosis, is increased with doses of temsirolimus greater than 25 mg.
来源:DrugBank
吸收、分配和排泄
  • 吸收
输注静脉给药,超过30-60分钟。C<sub>max</sub>通常在输注结束时观察到。
Infused intravenous over 30 - 60 minutes. C<sub>max</sub> is typically observed at the end of infusion
来源:DrugBank
吸收、分配和排泄
  • 消除途径
主要在粪便中排泄(76%),药物及其代谢物在尿液中有4.6%被回收。在14天的样本收集期后,17%的药物未通过任何途径被回收。
Excreted predominantly in feces (76%), 4.6% of drug and metabolites recovered in urine. 17% of drug was not recovered by either route following a 14-day sample collection.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
癌症患者全血中的172 L;雷帕霉素和西罗莫司都广泛分布并分配到形成的血细胞中。
172 L in whole blood of cancer patients; both temsirolimus and sirolimus are extensive distributed partitioned into formed blood elements
来源:DrugBank
吸收、分配和排泄
  • 清除
16.2 升/小时 (22%)
16.2 L/h (22%)
来源:DrugBank
吸收、分配和排泄
在癌症患者中给予单次25毫克剂量的坦西莫利布斯后,全血中坦西莫利布斯的平均Cmax为585 ng/mL(变异系数,CV=14%),血液中的平均AUC为1627 ng·hr/mL(CV=26%)。通常Cmax发生在输注结束时。在1毫克到25毫克的剂量范围内,坦西莫利布斯的暴露量呈小于剂量比例的方式增加,而西罗利布斯的暴露量则与剂量成比例增加。在癌症患者中给予单次25毫克静脉注射后,西罗利布斯的AUC是坦西莫利布斯AUC的2.7倍,这主要是由于西罗利布斯半衰期较长。
Following administration of a single 25 mg dose of temsirolimus in patients with cancer, mean temsirolimus Cmax in whole blood was 585 ng/mL (coefficient of variation, CV =14%), and mean AUC in blood was 1627 ng.hr/mL (CV=26%). Typically Cmax occurred at the end of infusion. Over the dose range of 1 mg to 25 mg, temsirolimus exposure increased in a less than dose proportional manner while sirolimus exposure increased proportionally with dose. Following a single 25 mg intravenous dose in patients with cancer, sirolimus AUC was 2.7-fold that of temsirolimus AUC, due principally to the longer half-life of sirolimus.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 安全说明:
    S24/25
  • WGK Germany:
    3
  • 海关编码:
    29349990

SDS

SDS:c9c899c15680a290b667b3791bf8b503
查看

制备方法与用途

概述

替西罗莫司(temsirolimus),又称西罗莫司酯化物,是由辉瑞医药研发的一种靶向性抗肿瘤药物,用于治疗进展性肾癌。它是首个针对肾癌的靶向治疗药物,并且是唯一上市的特异性抑制mTOR激酶的药物。

相关研究

mTOR激酶在调节细胞增殖、生长和存活方面起着重要作用。体外研究表明,替西罗莫司通过抑制mTOR激酶导致血管内皮生长因子(VEGF)水平下降,进而阻止新生血管的发展,最终导致癌细胞死亡。

应用

在我国尚未上市,但国外的临床试验结果显示,替西罗莫司对晚期肾癌有较好的疗效,具有广阔的应用前景。

药理作用

mTOR是一种多功能激酶,属于磷脂酰肌醇3激酶(PI3K)蛋白激酶家族成员。作为PI3K/AKT信号通路的下游效应蛋白,其底物主要控制与细胞生长和增殖密切相关的蛋白质合成。肾透明细胞癌中普遍存在PI3K-AKT-mTOR信号传导通路的过度激活。

制备
  1. 坦罗莫司半成品制备:将8.3g粗品(纯度75.68%,西罗莫司3.47%,异构体16.48%)溶解于25mL乙酸乙酯中,上样至正相硅球填料柱进行梯度洗脱。在20℃条件下收集组分,并在30℃下减压浓缩至干,得到纯度为84.78%,西罗莫司0.02%,异构体13.28%的半成品。

  2. 进一步精制:通过后续处理,最终获得高纯度的替西罗莫司产品。

体内与体外研究
  • 体外研究:替西罗莫司抑制核糖体蛋白S6磷酸化。在PTEN阳性的DU145细胞中比在PTEN阴性的PC-3细胞中更为有效,且能够显著抑制细胞生长和克隆存活,作用呈浓度依赖性。对原代人淋巴细胞性白血病(ALL)细胞的处理也显示了显著抑制增殖并诱导凋亡的效果。

  • 体内研究:替西罗莫司以20 mg/kg剂量腹腔注射,每周5天,能够显著延迟DAOY移植瘤生长。在较高剂量(100 mg/kg)下单独给药一周内,肿瘤体积下降37%。处理两周也延缓了对Rapamycin耐受的U251移植瘤生长。此外,在患Huntington疾病的小鼠模型中,替西罗莫司能够抑制mTOR并改善多种行为任务表现。它还能够在皮下诱导显著的抗癌反应,并在携带人ALL的NOD/SCID移植瘤模型中降低外周血膨胀和脾肿大。

这些研究结果表明替西罗莫司具有良好的治疗潜力,特别是在抗肿瘤方面显示出显著效果。

反应信息

  • 作为反应物:
    描述:
    CCI-779 在 NADPH 、 glucose-6-phosphate dehydrogenase 、 CYP-3A4 isozyme 、 D-glucose-6-phosphate 、 氧气 、 magnesium chloride 作用下, 以 为溶剂, 生成 27-hydroxy seco-CCI-779 、 11-hydroxy CCI-779 、 35-hydroxy CCI-779 、 N-oxide CCI-779 、 36-hydroxy CCI-779
    参考文献:
    名称:
    US2006/36091
    摘要:
    公开号:
点击查看最新优质反应信息

文献信息

  • US2006/36091
    申请人:——
    公开号:——
    公开(公告)日:——
查看更多

同类化合物

马杜霉素II 雷帕霉素 长川霉素 达福普丁甲磺酸 西罗莫司脂化物 蛎灰菌素A 子囊霉素 威里霉素 唑他莫司 吡美莫司 双氢他克莫司 去甲氧基雷帕霉素 化合物 T32504 化合物 T25424 依维莫司 他克莫司杂质5 他克莫司31-DMT 他克莫司 乌米里莫斯 FK-506一水合物 8-表他克莫司 8,9,14,15,24,25,26,26alpha-八氢-14-羟基-4,12-二甲基-3-(1-甲基乙基)-(3R,4R,5E,10E,12E,14S,26alphaR)-3H-21,18-次氮基-1H,22H-吡咯并[2,1-c][1,8,4,19]二氧杂二氮杂二十四环-1,7,16,22(4H,17H)-四酮 42-O-[2-[[羟基[2-(三甲基铵)乙氧基]亚膦酰基]氧基]乙基]雷帕霉素内盐 42-(二甲基亚膦酰)雷帕霉素 42-(2-四唑基)雷帕霉素 40-O-[2-(叔丁基二甲硅基)氧代]乙基雷帕霉素 37-去亚甲基24,33-二-O-(叔-丁基二甲基硅烷基)-37-氧代-FK-506 31-O-去甲基-Fk506 28-O-甲基-雷帕霉素 24,33-二-O-(叔-丁基二甲基硅烷基)-37,38-去氢-37,38-二羟基-FK-506 24,32-双-O-(tert-butyldimethylsilyl)-他克莫司 22-羟基-33-叔-丁基二甲基硅烷基氧基-异-FK-506 2-甲氧基-5-硝基嘧啶-4-胺 19-表FK-506 15-O-去甲基长川霉素 13-O-去甲基子囊霉素 (E/Z)-FK-50626,28-烯丙酸酯 (2S,5S,6R,10R,11S)-10-庚基-6-羟基-4,11-二甲基-5-(苯基甲基)-2-丙-2-基-1,9-二氧杂-4-氮杂环十二烷-3,8,12-三酮 (1R,2R,4S)-4-{(2R)-2-[(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-二羟基-19,30-二甲氧基-15,17,21,23,29,35-六甲基-2,3,10,14,20-五氧代-11,36-二氧杂-4-氮杂三环[30.3.1.04,9]三十六碳-16,24,26,28-四烯-12-基]丙基}-2-甲氧基环己基2,2,5-三甲基-1,3-二恶烷-5-羧酸酯 (21S)-1-aza-4,4-dimethyl-6,19-dioxa-2,3,7,20-tetraoxobicyclo<19.4.0>pentacosane CCI-779 boronate rapamycin (-)-spongedepsin (1R,9S,12SR,15R,16E,18R,19R,21R,23S,24E,26E,28E,32SR,35R)-1,18-dihydroxy-30-(3-hydroxypropoxy)-19-methoxy-12-[(1R)-2-[(1S,3R,4R)-3-methoxy-4-(3-phenylpropoxy)cyclohexyl]-1-methylethyl]-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.0^4,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone rapamycin 42-hemiadipate Rapamycin 42-ester with 4-methylpiperazine-1-carboxylic acid rapamycin O-[(S)-2,3-dihydroxypropyloxycarbonyl]rapamycin 29-epirapamycin 40-O-tert-butyldimethylsilyl rapamycin