Nonenzymatic Acylative Kinetic Resolution of Baylis−Hillman Adducts
摘要:
The first efficient nonenzymatic acylative kinetic resolution of Baylis-Hillman adducts is reported. Chiral pyridine catalyst 1a and an optimized analogue 1e are capable of promoting the synthetically useful enantioselective acylation (the efficiency of which is outstanding for sp(2)-sp(2) carbinol substrates, s = 3.5-13.1, ee up to 97%) of Baylis-Hillman adducts derived from recalcitrant precursors which are currently difficult to synthesize utilizing benchmark asymmetric Baylis-Hillman reaction catalyst technology. A novel one-pot synthesis-kinetic resolution process involving a DBU-catalyzed Baylis-Hillman reaction and subsequent 1e/DBU-mediated enantioselective acylation has also been developed.
Nonenzymatic Acylative Kinetic Resolution of Baylis−Hillman Adducts
作者:Ciarán Ó Dálaigh、Stephen J. Connon
DOI:10.1021/jo071223b
日期:2007.8.31
The first efficient nonenzymatic acylative kinetic resolution of Baylis-Hillman adducts is reported. Chiral pyridine catalyst 1a and an optimized analogue 1e are capable of promoting the synthetically useful enantioselective acylation (the efficiency of which is outstanding for sp(2)-sp(2) carbinol substrates, s = 3.5-13.1, ee up to 97%) of Baylis-Hillman adducts derived from recalcitrant precursors which are currently difficult to synthesize utilizing benchmark asymmetric Baylis-Hillman reaction catalyst technology. A novel one-pot synthesis-kinetic resolution process involving a DBU-catalyzed Baylis-Hillman reaction and subsequent 1e/DBU-mediated enantioselective acylation has also been developed.