A rhodium(III)-catalyzed C–H allylation of (hetero)arenes by using 2-methylidenetrimethylene carbonate as an efficient allylic source has been developed for the first time. Five different directing groups including oxime, N-nitroso, purine, pyridine, and pyrimidine were compatible, delivering various branched allylarenes bearing an allylic hydroxyl group in moderate to excellent yields.
A rhodium(III)-catalyzed intermolecularC–Hamination of ketoxime and iodobenzene diacetate-enabled N–N bond formation in the synthesis of indazoles has been developed. A variety of functional groups were well tolerated, providing the corresponding products in moderate to good yields. Moreover, the nitro-substituted ketoximes are well compatible in this reaction, leading to the corresponding products
Palladium-catalyzed arene C(sp2)–H acetoxylation has emerged as a powerful tool to construct a carbon–oxygen (C–O) bond. However, the requirement of stoichiometric chemical oxidants for this transformation possesses a significant disadvantage. To solve this fundamental problem, we now report an anodic oxidation strategy to achieve arene C(sp2)–H acetoxylation.
C(sp2)–H bond oxidation of oximes or azobenzenes with diverse carboxylic acids has been developed. In contrast to the previous catalytic systems, this protocol features mild conditions (close to room temperature for most cases) and a broad substrate scope (up to 64 examples), thus constituting a versatile method to directly prepare diverse O-aryl esters. Moreover, the superiority of the nitrate additive
Molecular oxygen, the most environmentally friendly oxidant, was used as the terminal oxidant for palladium-catalyzed radical oxidative acylation of arenes.