2- and 3-Substituted 1,4-Naphthoquinone Derivatives as Subversive Substrates of Trypanothione Reductase and Lipoamide Dehydrogenase from <i>Trypanosoma</i> <i>c</i><i>ruzi</i>: Synthesis and Correlation between Redox Cycling Activities and in Vitro Cytotoxicity
Trypanothionereductase (TR) is both a valid and an attractive target for the design of new trypanocidal drugs. Starting from menadione, plumbagin, and juglone, three distinct series of 1,4-naphthoquinones (NQ) were synthesized as potential inhibitors of TR from Trypanosoma cruzi (TcTR). The three parent molecules were functionalized at carbons 2 and/or 3 by various polyamine chains. Optimization of
In order to obtain functionalizednaphthoquinones, a systematic study of the Kochi–Anderson procedure for the alkylation of quinones is presented. While linear amino acids of different lengths were good substrates for this decarboxylation procedure, chiral α-amino acids were unsuccessful substrates. The best reaction conditions were evaluated with β-alanine and then applied to a series of carboxylic