摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E,E)-1,4-bis[4-(acetylsulfanylmethyl)styryl]benzene

中文名称
——
中文别名
——
英文名称
(E,E)-1,4-bis[4-(acetylsulfanylmethyl)styryl]benzene
英文别名
(E,E)-1,4-bis[4-(S-acetylthiomethyl)styryl]benzene;(E,E)-1,4-bis[4'-methyl(thioacetyl)styryl]benzene;S-[[4-[(E)-2-[4-[(E)-2-[4-(acetylsulfanylmethyl)phenyl]ethenyl]phenyl]ethenyl]phenyl]methyl] ethanethioate
(E,E)-1,4-bis[4-(acetylsulfanylmethyl)styryl]benzene化学式
CAS
——
化学式
C28H26O2S2
mdl
——
分子量
458.645
InChiKey
LNSFPIZZQKVIID-FIFLTTCUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.9
  • 重原子数:
    32
  • 可旋转键数:
    10
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.14
  • 拓扑面积:
    84.7
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    Single-Molecule Charge-Transport Measurements that Reveal Technique-Dependent Perturbations
    摘要:
    We compare scanning tunneling microscopy (STM) imaging with single-molecule conductive atomic force microscopy (C-AFM)measurements by probing a series of structurally related thiol-terminated oligo(phenylenevinylene)s (OPVs) designed to have unique charge-transport signatures. When one or two methylene spacers are inserted between the thiol points of attachment and the OPV core, a systematic reduction in the imaged molecular transconductance and the current transmitted through a metal-moleculemetal junction containing the molecule is observed, indicating good agreement between STM and C-AFM measurements. However, a structure where the OPV backbone is interrupted by a [2.2] paracyclophane core has a low molecular transconductance, as determined from STM images, and a high measured single-molecule conductance. This apparent disconnect can be understood by comparing the calculated molecular orbital topology of the OPV with one thiol bound to a gold surface (the geometry in the STM experiment) with the topology of the molecule with both thiol termini bound to gold (relevant to C-AFM). In the former case, a single contact splits low-lying molecular orbitals into two discrete fragments, and in the latter case, molecular orbitals that span the entire molecule are observed. Although the difference in observed conductance between the two different measurements is resolved, the overall set of observations highlights the importance of using combined techniques to better characterize charge-transport properties relevant to molecular electronics.
    DOI:
    10.1021/ja062898j
点击查看最新优质反应信息

文献信息

  • Synthetic protocols and building blocks for molecular electronics
    作者:Nicolai Stuhr-Hansen、Jakob Kryger Sørensen、Kasper Moth-Poulsen、Jørn Bolstad Christensen、Thomas Bjørnholm、Mogens Brøndsted Nielsen
    DOI:10.1016/j.tet.2005.09.106
    日期:2005.12
    Simple and readily accessible aryl bromides are useful building blocks for thiol end-capped molecular wires. Thus, 4-bromophenyl tert-butyl sulfide and 1-bromo-4-(methoxymethyl)benzene serve as precursors for a variety of oligo(phenylenevinylene) and oligo(phenyleneethynylene) wires via efficient synthetic transformations as presented in this paper. (c) 2005 Elsevier Ltd. All rights reserved.
  • Fabrication of Steady Junctions Consisting of α,ω-Bis(thioacetate) Oligo(<i>p</i>-phenylene vinylene)s in Nanogap Electrodes
    作者:Tien-Tzu Liang、Yasuhisa Naitoh、Masayo Horikawa、Takao Ishida、Wataru Mizutani
    DOI:10.1021/ja062561h
    日期:2006.10.1
    For obtaining molecular devices using metal-molecule-metal junctions, it is necessary to fabricate a steady conductive bridge-structure; that is stable chemical bonds need to be established from a single conductive molecule to two facing electrodes. In the present paper, we show that the steadiness of a conductive bridge-structure depends on the molecular structure of the bridge molecule for nanogap junctions using three types of modified oligo(phenylene vinylene)s (OPVs): alpha,omega-bis(thioacetate) oligo(phenylene vinylene) (OPV1), alpha,omega-bis(methylthioacetate) oligo(phenylene vinylene) (OPV2), and OPV2 consisting of ethoxy side chains (OPV3). We examined the change in resistance between the molecule-bridged junction and a bare junction in each of the experimental Au-OPV-Au junctions to confirm whether molecules formed steady bridges. Herein, the outcomes of whether molecules formed steady bridges were defined in terms of three types of result; successful, possible and failure. We define the ratio of the number of successful junctions to the total number of experimental junctions as successful rate. A 60% successful rate for OPV3 was higher than for the other two molecules whose successful rates were estimated to be similar to 10%. We propose that conjugated molecules consisting of methylthioacetate termini and short alkoxy side chains are well suited for fabricating a steady conductive bridge-structure between two facing electrodes.
  • Single-Molecule Charge-Transport Measurements that Reveal Technique-Dependent Perturbations
    作者:Dwight S. Seferos、Amy Szuchmacher Blum、James G. Kushmerick、Guillermo C. Bazan
    DOI:10.1021/ja062898j
    日期:2006.8.1
    We compare scanning tunneling microscopy (STM) imaging with single-molecule conductive atomic force microscopy (C-AFM)measurements by probing a series of structurally related thiol-terminated oligo(phenylenevinylene)s (OPVs) designed to have unique charge-transport signatures. When one or two methylene spacers are inserted between the thiol points of attachment and the OPV core, a systematic reduction in the imaged molecular transconductance and the current transmitted through a metal-moleculemetal junction containing the molecule is observed, indicating good agreement between STM and C-AFM measurements. However, a structure where the OPV backbone is interrupted by a [2.2] paracyclophane core has a low molecular transconductance, as determined from STM images, and a high measured single-molecule conductance. This apparent disconnect can be understood by comparing the calculated molecular orbital topology of the OPV with one thiol bound to a gold surface (the geometry in the STM experiment) with the topology of the molecule with both thiol termini bound to gold (relevant to C-AFM). In the former case, a single contact splits low-lying molecular orbitals into two discrete fragments, and in the latter case, molecular orbitals that span the entire molecule are observed. Although the difference in observed conductance between the two different measurements is resolved, the overall set of observations highlights the importance of using combined techniques to better characterize charge-transport properties relevant to molecular electronics.
查看更多

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 银松素 铒(III) 离子载体 I 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯 钠3-(4-甲氧基苯基)-2-苯基丙烯酸酯 重氮基乙酸胆酯酯 醋酸(R)-(+)-2-羟基-1,2,2-三苯乙酯 酸性绿16 邻氯苯基苄基酮 那碎因盐酸盐 那碎因[鹼] 达格列净杂质54 辛那马维林 赤藓型-1,2-联苯-2-(丙胺)乙醇 赤松素 败脂酸,丁基丙-2-烯酸酯,甲基2-甲基丙-2-烯酸酯,2-甲基丙-2-烯酸