Imido Transfer from Bis(imido)ruthenium(VI) Porphyrins to Hydrocarbons: Effect of Imido Substituents, C−H Bond Dissociation Energies, and Ru<sup>VI/V</sup> Reduction Potentials
(BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary
A Highly Effective Cobalt Catalyst for Olefin Aziridination with Azides: Hydrogen Bonding Guided Catalyst Design
作者:Joshua V. Ruppel、Jess E. Jones、Chelsea A. Huff、Rajesh M. Kamble、Ying Chen、X. Peter Zhang
DOI:10.1021/ol800588p
日期:2008.5.1
[Co(P1)], which was designed on the basis of potential hydrogen-bonding interactions in the metal-nitrene intermediate, is a highly active aziridination catalyst with azides. [Co(P1)] can effectively aziridinate various aromatic olefins with arylsulfonyl azides under mild conditions, forming sulfonylated aziridines in excellent yields. The Co-based system enjoys several attributes associated with the relatively low cost of cobalt and the wide accessibility of arylsulfonyl azides. Furthermore, it generates stable dinitrogen as the only byproduct.
Metal Porphyrin Catalyzed Olefin Aziridination with Sulfonyl Azides
申请人:Zhang X. Peter
公开号:US20110112288A1
公开(公告)日:2011-05-12
Cobalt(II) complex of P1 [Co(P1)], a new porphyrin that was designed on the basis of potential hydrogen bonding interactions in the metal-nitrene intermediate, is a highly active catalyst for olefin aziridination with azides. The [Co(P1)]-based system can be effectively employed for different combinations of aromatic olefins and arysulfonyl azides, synthesizing various sulfonylated aziridines in excellent yields. Besides its mild catalytic conditions, the Co-catalyzed aziridination process enjoys several attributes associated with the relatively low cost of cobalt and widely accessible arylsulfonyl azides. Furthermore, it generates stable dinitrogen as the only by-product.
Expedient Synthesis of 2‐Iminothiazolidines via Telescoping Reactions Including Iron‐Catalyzed Nitrene Transfer and Domino Ring‐Opening Cyclization (DROC)
作者:Guillaume Coin、Oriane Ferrier de Montal、Patrick Dubourdeaux、Jean‐Marc Latour
DOI:10.1002/ejoc.202001379
日期:2021.1.22
In this work, iron‐catalyzed aziridination (nitrene transfer) is combined in a single process to aziridine ring opening (DROC) to produce 2‐iminothiazolidines which constitute interesting cores of pharmaceuticals.