摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(+/-)-trans-4-hydroxy-5-methoxy-1,2-dithiane

中文名称
——
中文别名
——
英文名称
(+/-)-trans-4-hydroxy-5-methoxy-1,2-dithiane
英文别名
(4R/S,5R/S)-5-methoxy-1,2-dithian-4-ol;(4SR,5SR)-5-methoxy-1,2-dithian-4-ol;(4S,5S)-5-methoxydithian-4-ol
(+/-)-trans-4-hydroxy-5-methoxy-1,2-dithiane化学式
CAS
——
化学式
C5H10O2S2
mdl
——
分子量
166.265
InChiKey
OMXJSIIQCASGNT-RFZPGFLSSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0
  • 重原子数:
    9
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    80.1
  • 氢给体数:
    1
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (+/-)-trans-4-hydroxy-5-methoxy-1,2-dithiane四丁基氟化铵 、 sodium hydride 作用下, 以 四氢呋喃N,N-二甲基甲酰胺 为溶剂, 反应 27.0h, 生成 (+/)-2-[2-[2-[(trans-5'-methoxy-1',2'-dithian-4'-yl)oxy]ethoxy]ethoxy]ethanol
    参考文献:
    名称:
    Synthesis and Characterization of SAMs and Tethered Bilayer Membranes from Unsymmetrically Substituted 1,2-Dithianes
    摘要:
    本文介绍了一系列新的成膜化合物的合成过程,这些化合物是基于以前在离子通道开关(ICS)生物传感器(《自然》,1997 年,387,580 期)中使用的成熟成分。所有新化合物都来自 4,5-二羟基-1,2-二噻烷,并包含亲水储层部分(基于乙二醇单元)和亲锂部分(基于天然脂质植物醇)。椭偏仪和接触角测量结果表明,由新材料形成的自组装单层(SAM)的厚度和膜填料与之前报道的生物传感器元件相当。利用离子载体缬氨霉素的阻抗光谱法研究了含有新型材料的系链双层脂膜(t-BLMs)。t-BLMs 的电学行为和计算膜厚度与从标准 ICS 成分得出的结果相当,这表明新型成膜化合物能形成稳定的膜,其流动性足以在缬霉素存在时传输钾离子。
    DOI:
    10.1071/ch05175
  • 作为产物:
    描述:
    (4S,5S)-1,2-二噻烷-4,5-二醇硫酸二甲酯四丁基硫酸氢铵 、 potassium hydroxide 作用下, 以 2-甲基四氢呋喃 为溶剂, 以40.3%的产率得到(+/-)-trans-4-hydroxy-5-methoxy-1,2-dithiane
    参考文献:
    名称:
    Cyclic-Disulfide-Based Prodrugs for Cytosol-Specific Drug Delivery
    摘要:
    AbstractThe cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.
    DOI:
    10.1002/anie.201407130
点击查看最新优质反应信息

文献信息

  • Synthesis and Characterization of SAMs and Tethered Bilayer Membranes from Unsymmetrically Substituted 1,2-Dithianes
    作者:Christopher J. Burns、Leslie D. Field、Brian J. Petteys、Damon D. Ridley
    DOI:10.1071/ch05175
    日期:——

    The synthesis of a series of new membrane-forming compounds, based on previously established components used in an ion-channel switch (ICS) biosensor (Nature 1997, 387, 580) is described. All new compounds are derived from 4,5-dihydroxy-1,2-dithiane, and contain a hydrophilic reservoir section (based on ethylene glycol units) and a lypophilic section (based on the natural lipid phytanol). Ellipsometry and contact angle measurements indicate that self-assembled monolayers (SAMs) formed from the new materials possess thicknesses and membrane packing comparable to previously reported biosensor components. Tethered bilayer lipid membranes (t-BLMs) incorporating the novel materials were studied using impedance spectroscopy with the ion-carrier valinomycin. The electrical behavior and calculated membrane thickness of the t-BLMs are comparable to those derived from the standard ICS components and this demonstrates that the novel membrane-forming compounds form stable membranes that are sufficiently fluid to transport potassium ions in the presence of valinomycin.

    本文介绍了一系列新的成膜化合物的合成过程,这些化合物是基于以前在离子通道开关(ICS)生物传感器(《自然》,1997 年,387,580 期)中使用的成熟成分。所有新化合物都来自 4,5-二羟基-1,2-二噻烷,并包含亲水储层部分(基于乙二醇单元)和亲锂部分(基于天然脂质植物醇)。椭偏仪和接触角测量结果表明,由新材料形成的自组装单层(SAM)的厚度和膜填料与之前报道的生物传感器元件相当。利用离子载体缬氨霉素的阻抗光谱法研究了含有新型材料的系链双层脂膜(t-BLMs)。t-BLMs 的电学行为和计算膜厚度与从标准 ICS 成分得出的结果相当,这表明新型成膜化合物能形成稳定的膜,其流动性足以在缬霉素存在时传输钾离子。
  • Cyclic-Disulfide-Based Prodrugs for Cytosol-Specific Drug Delivery
    作者:Gabor Butora、Ning Qi、Wenlang Fu、Truyen Nguyen、Hsueh-Cheng Huang、Ian W. Davies
    DOI:10.1002/anie.201407130
    日期:2014.12.15
    AbstractThe cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.
查看更多

同类化合物

硫化膦,1,3-二硫烷-2-基甲基苯基- 硅烷,三甲基(2-甲基-1,3-二硫烷-2-基)- 沙丙喋呤中间体 四氢-1,2-二噻英 反式-1,2-二噻烷-4,5-二醇1,1-二氧化物 八氟-1,4-二噻烷 二(1,3-二噻烷-2-基)甲烷-D 二(1,3-二噻烷-2-基)甲烷 N-乙基-1,3-二噻烷-2-亚胺 N-(1,3-二硫杂环戊-2-亚基)氨基磷酸二甲酯 N,N’-1,6-己烷二基双氨基甲酸双(1,3-二噻烷-2-基甲基)酯 5alpha-[N-(亚硝基氨基甲酰)-N-(2-氯乙基)氨基]-2beta-甲基-1,3-二噻烷1,1,3,3-四氧化物 5,6-二氢-4H-1,3-二噻英-2-硫酮 4-甲基-2,6,7-三硫杂二环[2.2.2]辛烷 4-(丙氧基甲基)-2,6,7-三硫杂二环[2.2.2]辛烷 3-(1,3-二噻烷-5-基)-1-(2-氟乙基)-1-亚硝基脲 3-(1,3-二噻烷-2-亚基)-2,4-戊二酮 3,3-二甲基二环[2.2.1]庚烷-2-甲醇 2-苯基-1,3-二噻烷锂盐 2-苯基-1,3-二噻烷 2-脱氧-D-阿拉伯糖-己糖亚丙基二硫代缩醛 2-甲基-1,3-二噻烷 2-戊基-1,3-二噻烷 2-异丙基-1,3-二噻烷 2-异丁基-1,3-二噻烷 2-乙炔基-1,3-二噻烷 2-乙基-1,3-二噻烷 2-三甲基硅基-1,3-二噻吩 2-(叔丁基二甲基甲硅烷基)-1,3-二噻烷 2-(三异丙基甲硅烷基)-1,3-二噻烷 2-(3,4-二羟基苯基)-5,7-二羟基-6-[(2S,3R,4R,5S,6R)-3,4,5-三羟基-6-(羟甲基)四氢-2H-吡喃-2-基]-8-[(2S,3R,4S,5S)-3,4,5-三羟基四氢-2H-吡喃-2-基]-4H-色烯-4-酮(non-preferredname) 2-(1,3-二噻烷-2-基)乙醇 2,5-二甲基-2,5-二羟基-1,4-二噻烷 2,5-二甲基-2,5-二羟基-1,4-二噻烷 2,5-二乙氧基-1,4-二噻烷 2,2’-乙烯双(1,3-二噻烷) 2,2-双(三甲基硅基)二噻烷 2,2'-(1,2-亚苯基)二(1,3-二噻烷) 1-(2-氯乙基)-3-(2alpha-甲基-1,3-二噻烷-5alpha-基)-3-亚硝基脲 1-(2-氯乙基)-3-(1,3-二噻烷-5-基)-1-亚硝基脲 1-(2-氯乙基)-1-亚硝基-3-(1,1,3,3-四氧代-1,3-二噻烷-5-基)脲 1-(2-氟乙基)-1-亚硝基-3-(1,1,3,3-四氧代-1,3-二噻烷-5-基)脲 1-(1,3-二噻烷-2-基)乙酮 1-(1,3-二噻烷-2-基)-2-环己烯-1-醇 1-(1,3-二噻烷-2-基)-2,2,2-三氟乙烷酮 1,8-二羟基-2,9-二硫杂三环[8.4.0.03,8]十四烷 1,5,7,11-四硫杂螺[5.5]十一烷 1,4-苯并二噻英,八氢- 1,4-二硫烷-2-甲腈 1,4-二硫-2,5-二醇