摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-<(octylamino)thiocarbonyl>-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline

中文名称
——
中文别名
——
英文名称
N-<(octylamino)thiocarbonyl>-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline
英文别名
6,7-dihydroxy-N-octyl-3,4-dihydro-1H-isoquinoline-2-carbothioamide
N-<(octylamino)thiocarbonyl>-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline化学式
CAS
——
化学式
C18H28N2O2S
mdl
——
分子量
336.499
InChiKey
UJBMOWDIIDHKFO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.4
  • 重原子数:
    23
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.61
  • 拓扑面积:
    87.8
  • 氢给体数:
    3
  • 氢受体数:
    3

反应信息

  • 作为产物:
    参考文献:
    名称:
    The Discovery of Capsazepine, the First Competitive Antagonist of the Sensory Neuron Excitants Capsaicin and Resiniferatoxin
    摘要:
    Capsaicin and resiniferatoxin are natural products which act specifically on a subset of primary afferent sensory neurons to open a novel cation-selective ion channel in the plasma membrane. These sensory neurons are involved in nociception, and so, these agents are targets for the design of a novel class of analgesics. Although synthetic agonists at the capsaicin receptor have been described previously, competitive antagonists at this receptor would be interesting and novel pharmacological agents. Structure-activity relationships for capsaicin agonists have previously been rationalized, by ourselves and others, by dividing the capsaicin molecule into three regions-the A (aromatic ring)-, B (amide bond)-, and C (hydrophobic side chain)-regions. In this study, the effects on biological activity of conformational constraint of the A-region with respect to the B-region are discussed. Conformational constraint was achieved by the introduction of saturated ring systems of different sizes. The resulting compounds provided agonists of comparable potency to unconstrained analogues as well as a moderately potent antagonist, capsazepine. This compound is the first competitive antagonist of capsaicin and resiniferatoxin to be described and is active in various systems, in vitro and in vivo. It has recently attracted considerable interest as a tool for dissecting the mechanisms by which capsaicin analogues evoke their effects. NMR spectroscopy and X-ray crystallography experiments, as well as molecular modeling techniques, were used to study the conformational behavior of a representative constrained agonist and antagonist. The conformation of the saturated ring contraint in the two cases was found to differ markedly, dramatically affecting the relative disposition of the A-ring and B-region pharmacophores. In agonist structures, the A- and B-regions were virtually coplanar in contrast to those in the antagonist, in which they were approximately orthogonal. A rationale for agonist and antagonist activity at the capsaicin receptor is proposed, based on the consideration of these conformational differences.
    DOI:
    10.1021/jm00039a006
点击查看最新优质反应信息

文献信息

  • The Discovery of Capsazepine, the First Competitive Antagonist of the Sensory Neuron Excitants Capsaicin and Resiniferatoxin
    作者:Christopher S. J. Walpole、Stuart Bevan、Guenter Bovermann、Johann J. Boelsterli、Robin Breckenridge、John W. Davies、Glyn A. Hughes、Iain James、Lukas Oberer、Janet Winter、Roger Wrigglesworth
    DOI:10.1021/jm00039a006
    日期:1994.6.1
    Capsaicin and resiniferatoxin are natural products which act specifically on a subset of primary afferent sensory neurons to open a novel cation-selective ion channel in the plasma membrane. These sensory neurons are involved in nociception, and so, these agents are targets for the design of a novel class of analgesics. Although synthetic agonists at the capsaicin receptor have been described previously, competitive antagonists at this receptor would be interesting and novel pharmacological agents. Structure-activity relationships for capsaicin agonists have previously been rationalized, by ourselves and others, by dividing the capsaicin molecule into three regions-the A (aromatic ring)-, B (amide bond)-, and C (hydrophobic side chain)-regions. In this study, the effects on biological activity of conformational constraint of the A-region with respect to the B-region are discussed. Conformational constraint was achieved by the introduction of saturated ring systems of different sizes. The resulting compounds provided agonists of comparable potency to unconstrained analogues as well as a moderately potent antagonist, capsazepine. This compound is the first competitive antagonist of capsaicin and resiniferatoxin to be described and is active in various systems, in vitro and in vivo. It has recently attracted considerable interest as a tool for dissecting the mechanisms by which capsaicin analogues evoke their effects. NMR spectroscopy and X-ray crystallography experiments, as well as molecular modeling techniques, were used to study the conformational behavior of a representative constrained agonist and antagonist. The conformation of the saturated ring contraint in the two cases was found to differ markedly, dramatically affecting the relative disposition of the A-ring and B-region pharmacophores. In agonist structures, the A- and B-regions were virtually coplanar in contrast to those in the antagonist, in which they were approximately orthogonal. A rationale for agonist and antagonist activity at the capsaicin receptor is proposed, based on the consideration of these conformational differences.
查看更多