Photopolymerizable epoxide and oxetane compositions
申请人:Crivello V. James
公开号:US20060041032A1
公开(公告)日:2006-02-23
Novel radiation-curable or photopolymerizable compositions and methods of use thereof as cured coatings are disclosed. The invention pertains to radiation-curable compositions which contain, in addition to typical components of radiation-curable epoxide and oxetane compositions, a free radical photoinitiator.
terpyridines those obtained as solids exhibited high thermal stability as opposed to those which were oils (tpy containing fluorene motif). Due to the fact that high thermal stability of 4'-phenyl-2,2':6′,2″-terpyridine derivatives showed photoluminescence (PL) quantum yield (Φ) in the range of 27–84% in solution, their electroluminescence ability was tested in diodes with guest-host configuration. For the compounds
Calorimetric and quantum chemical studies of some photodimers of anthracenes
作者:Stefan Grimme、Sigrid D. Peyerimhoff、Henri Bouas-Laurent、Jean-Pierre Desvergne、Hans-Dieter Becker、Stefan M. Sarge、Herbert Dreeskamp
DOI:10.1039/a900965e
日期:——
By differential scanning calorimetry (DSC) the reaction enthalpies of the thermal splitting of the following photochemically produced dimers of meso-substituted anthracenes in fluid solutions were determined: the head-to-tail (ht) dimers of 9-decylanthracene (DEA) and 9-decyloxyanthracene (DOA) in hydrocarbon solvents, and the head-to-head (hh) dimer of 9-methoxyanthracene (MOA) and the mixed hh dimer of 9-methoxyanthracene and 9-methoxy-10-methylanthracene (MMOA) in chlorinated solvents. The molar reaction enthalpy (in kJ mol-1) is found to be lower for the ht dimers (-28 kJ mol-1, DEA and -29 kJ mol-1, DOA) than for the hh dimers (-43 kJ mol-1, MOA and -44 kJ mol-1, MMOA) with an estimated precision of ±3 kJ mol-1 each. Quantum mechanical computations give energy differences for the thermal splitting of dianthracene and the two dimers of 9-methoxyanthracene in reasonable agreement with the reaction enthalpies observed. An analysis of the change in bond energies caused by the dimerization reveals that the relative stability of the dimer is mainly caused by a large increase in bond strength of the lateral benzene rings on dimerization.