摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-hydroxy-isoproturon

中文名称
——
中文别名
——
英文名称
2-hydroxy-isoproturon
英文别名
3-[4-(2-Hydroxypropan-2-yl)phenyl]-1,1-dimethylurea;3-[4-(2-hydroxypropan-2-yl)phenyl]-1,1-dimethylurea
2-hydroxy-isoproturon化学式
CAS
——
化学式
C12H18N2O2
mdl
——
分子量
222.287
InChiKey
LXNHEMJQNNQUAT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.7
  • 重原子数:
    16
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.42
  • 拓扑面积:
    52.6
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    异丙隆sodium hypochlorite 作用下, 以 为溶剂, 生成 2-hydroxy-isoproturon
    参考文献:
    名称:
    By-products formation during degradation of isoproturon in aqueous solution. II: chlorination
    摘要:
    After a previous study in which the considered oxidant was ozone (Part I), a laboratory investigation has been carried out to study the degradation of the herbicide isoproturon during its reaction with another oxidant. i.e, chlorine, in aqueous solution (Part II; this paper). The specific aim was to identify the by-products formed. The effects of pH and the presence of bromide ions were studied. Reactions have been carried out at room temperature, in phosphate buffered aqueous solutions, at four pHs (6, 7, 8 and 9), By-products identification was first performed using relatively high initial reagent concentrations which were analytically convenient ([isoproturon] = 40 mg/l, [HClO + ClO-] = 160 mg Cl/l, [Br-] = 80 mg/l). In follow-up studies, the by-products identified during this preliminary step were searched for when using concentration values closer to those actually encountered at real water treatment plants ([isoproturon] = 0.4 and 0.004 mg/l, [HClO + ClO-] = 1.6 mg Cl/l, [Br-] = 0.8 and 0.008 mg/l). Under all of the studied conditions, the results showed that isoproturon is completely degraded and that it decays much faster in the presence of bromide. The pH has a negligible influence when bromide ions are absent. On the contrary, if bromide ions are present, the isoproturon decay is slower at higher pH values. High performance liquid chromatography-mass spectrometry (HPLC-MS) analyses have led to the identification of several by-products as a result of simultaneous oxidation and substitution reactions, both occurring on the aromatic ring of the herbicide. However, the more abundant by-products are those resulting from the oxidation of the isoproturon aromatic ring. As far as halogenated by-products are concerned, the higher the bromide ion concentration the higher the ratio of brominated to chlorinated by-products. On the basis of the analytical results, a pathway for isoproturon degradation under the studied conditions is proposed, (C) 2001 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0043-1354(00)00428-0
点击查看最新优质反应信息

文献信息

  • By-products formation during degradation of isoproturon in aqueous solution. I: ozonation
    作者:G mascolo
    DOI:10.1016/s0043-1354(00)00427-9
    日期:2001.5
    The degradation of the herbicide isoproturon during its ozonation in aqueous solution has been investigated with the aim of identifying intermediate as well as final by-products formed. Ar ambient temperature, phosphate-buffered (pH = 7) isoproturon aqueous solutions (10, 10(-1) and 10(-3) mg/l) were ozonated in a semi-batch reactor, under a continuous flow of ozonated air whose ozone concentration was 9 and 0.9 O-3/l(air),for the highest and the two lower herbicide concentrations respectively. Measured steady-state ozone concentrations during the two sets of experiments (i.e. the highest and the lower isoproturon concentration) were 1.9 and 0.7 mg O-3/l. Under all of the above conditions. isoproturon was always completely removed in a period ranging between 5 and 15 min, essentially by reacting with molecular ozone. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses indicate that primary degradation by-products are formed either by introducing OH groups in the aromatic ring and/or in the side-chain substituents. or by breaking down the isopropyl alkyl chain. The results also show that these primary intermediates are successively degraded yielding low molecular weight compounds such as aldehydes, simple organic acids and alpha -oxo-acids, which have been identified by gas chromatography-electron capture detection (GC-ECD), ion chromatography (IC) and GC-MSI respectively. On the basis of the analytical results, a pathway for the degradation of isoproturon by ozone has been proposed. (C) 2001 Elsevier Science Ltd. Ali rights reserved.
  • By-products formation during degradation of isoproturon in aqueous solution. II: chlorination
    作者:G Mascolo
    DOI:10.1016/s0043-1354(00)00428-0
    日期:2001.5
    After a previous study in which the considered oxidant was ozone (Part I), a laboratory investigation has been carried out to study the degradation of the herbicide isoproturon during its reaction with another oxidant. i.e, chlorine, in aqueous solution (Part II; this paper). The specific aim was to identify the by-products formed. The effects of pH and the presence of bromide ions were studied. Reactions have been carried out at room temperature, in phosphate buffered aqueous solutions, at four pHs (6, 7, 8 and 9), By-products identification was first performed using relatively high initial reagent concentrations which were analytically convenient ([isoproturon] = 40 mg/l, [HClO + ClO-] = 160 mg Cl/l, [Br-] = 80 mg/l). In follow-up studies, the by-products identified during this preliminary step were searched for when using concentration values closer to those actually encountered at real water treatment plants ([isoproturon] = 0.4 and 0.004 mg/l, [HClO + ClO-] = 1.6 mg Cl/l, [Br-] = 0.8 and 0.008 mg/l). Under all of the studied conditions, the results showed that isoproturon is completely degraded and that it decays much faster in the presence of bromide. The pH has a negligible influence when bromide ions are absent. On the contrary, if bromide ions are present, the isoproturon decay is slower at higher pH values. High performance liquid chromatography-mass spectrometry (HPLC-MS) analyses have led to the identification of several by-products as a result of simultaneous oxidation and substitution reactions, both occurring on the aromatic ring of the herbicide. However, the more abundant by-products are those resulting from the oxidation of the isoproturon aromatic ring. As far as halogenated by-products are concerned, the higher the bromide ion concentration the higher the ratio of brominated to chlorinated by-products. On the basis of the analytical results, a pathway for isoproturon degradation under the studied conditions is proposed, (C) 2001 Elsevier Science Ltd. All rights reserved.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐