There is limited data on the metabolism and resulting metabolites of the drug; however, it is estimated that icaridin undergoes phase I metabolic reactions involving 2-methylpropyl side chain or the piperidine ring being hydroxylated. It is also noted that the hydroxyethyl sidechain was oxidized to produce a carbonyl group. There was very little Phase 2 metabolism of the icaridin.
Analysis of the metabolites revealed that the predominant modifications of the parent compound were phase 1 reactions in which the piperidine ring or the 2-methylpropyl sidechain was hydroxylated or the hydroxyethyl sidechain was oxidized to the carbonyl moiety. Phase 2 conjugation reactions with glucuronide, linoleic or oleic acid constituted a very minor fraction of the recovered metabolites.
IDENTIFICATION AND USE: Picaridin is a colorless liquid. Picaridin is an insect repellent, for application to human or animal skin. In particular, it is used as mosquito repellent. HUMAN EXPOSURE AND TOXICITY: Allergic contact dermatitis has been reported in a human following routine application of picaridin and produced erythema and pruritis. It is not clear whether the solvent methyl glucose-dioleate had a causative or additive effect. However, insect repellents containing picaridin may be acceptable alternatives in patients who demonstrate sensitivity to products containing DEET. Primary symptoms across all insect repellent exposures included ocular irritation/pain, vomiting, red eye/conjunctivitis, and oral irritation. Unintentional ingestion of picaridin-containing and other insect repellents was associated only with minor toxicity. ANIMAL STUDIES: The skin of 50 rats/sex/group was treated with 0, 50, 100 or 200 mg/kg/day 5 days per week for 2 years (the two year cohort). Additionally, 20 animals/sex/group were treated with 0 or 200 mg/kg/kg and 10 animals/sex/group were treated with 50 or 100 mg/kg/day of the test material. These animals received the treatment for one year (one year cohort). There was no apparent effect of an increased mortality due to the treatment. There was no treatment-related effect upon mean body weight, food consumption, clinical signs, ophthalmology, hematology, clinical chemistry, urinalysis, absolute or relative organ weights, or histopathology. The skin of 30 rats/sex/group was treated with 0, 50, 100, or 200 mg/kg/day 5 days/week for two generations. The treatment periods included 10 weeks prior to mating, mating, 3 weeks gestation and 3 weeks of lactation. At that time, 30 F1 animals/sex/group were selected as parents and treated for an additional 10 weeks, followed by mating and 3 weeks each for gestation and lactation of the F2 generation. There were no apparent treatment-related clinical signs related to systemic toxicity or effects upon the mean body weights and food consumption of the parental animals in either generation. At the application site, hyperkeratosis and acanthosis, apparent for even some of the control animals, increased in severity in a dose-related manner. There was no effect upon the reproductive parameters or development of the offspring in either generation. Picaridin was tested in S. typhimurium TA98, TA100, TA1535 and TA1537 strains at levels ranging from 8 to 5000 ug/plate (both trials) with or without metabolic activation and incubated for 48 hours at 37 °C. There was no apparent treatment-related increase in the incidence of reverse mutation. There was no treatment-related increase in the number of micronuclei in mouse micronucleus test.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
癌症分类:不太可能对人类致癌
Cancer Classification: Not Likely to be Carcinogenic to Humans
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
◉ Summary of Use during Lactation:No information is available on the clinical use of icaridin (picaridin) during breastfeeding. However, the Centers for Disease Control and Prevention and U.S. Environmental Protection Agency consider icaridin to be safe and effective during breastfeeding when used as directed. It should be used by breastfeeding women to avoid exposure to mosquito-borne viruses.[1] Avoid application directly to the nipple and other areas where the infant might directly ingest the product.
◉ Effects in Breastfed Infants:Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk:Relevant published information was not found as of the revision date.
来源:Drugs and Lactation Database (LactMed)
毒理性
副作用
职业性肝毒素 - 第二性肝毒素:在职业环境中的毒性效应潜力是基于人类摄入或动物实验的中毒案例。
Occupational hepatotoxin - Secondary hepatotoxins: the potential for toxic effect in the occupational setting is based on cases of poisoning by human ingestion or animal experimentation.
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
In a dermal metabolism rat study, dermal application of 20 mg/kg of radio-labeled icaridin resulted in 61-66% of the dose absorbed through the skin. Following topical application of 20 mg/kg on rats, the peak plasma concentrations were measured to be 0.5 μg/mL in male rats and 0.8-1.6 μg/mL in female rats. In a study of human volunteers, less than 6% of the applied doses were absorbed after topical application of 14.7 or 15.0 mg of technical grade icaridin and covering the application site with a protective wrap for eight hours.
Following topical administration on rats at doses of 20 mg/kg, urinary excretion was reported to be the primary route of elimination where 73-88% of the parent compound was recovered in the urine. At doses of 200 mg/kg, 33-40% of the administered dose was excreted in the urine or feces. No data were available on the composition of parent compound and metabolites in the urine of either animals or humans.
In a rat study, dermal application of icaridin at doses of either 20 mg/kg or 200 mg/kg resulted in plasma concentrations ranging from 0.5 μg/ml for males and 0.8-1.6 μg/ml for females in the 20 mg/kg test group, and 4.48 μg/ml in male rats and 1.70 μg/ml and female rats in the 200 mg/kg test group. Icaridin applied to the arms of human volunteers was not found in blood plasma.
来源:DrugBank
吸收、分配和排泄
清除
没有关于埃卡瑞丁清除率的信息。
There is no available information on the clearance of icaridin.
Picaridin and oxybenzone are two active ingredients found in repellent and sunscreen preparations, respectively. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of picaridin and oxybenzone across human epidermis and poly(dimethylsiloxane) (PDMS) membrane. Permeation of picaridin (PCR) and oxybenzone (OBZ) across human epidermis was suppressed when both active ingredients were used concurrently; increasing concentration of the test compounds further reduced the permeation percentage of picaridin and oxybenzone. While permeation characteristics were correlative between human epidermis and PDMS membrane, permeability of PDMS membrane was significantly larger than that of human epidermis. The findings were different from concurrent use of repellent DEET and sunscreen oxybenzone in which a synergistic permeation enhancement was observed. Further comparative studies are therefore needed to understand permeation mechanisms and interactions between picaridin and oxybenzone.
Compounds of the formula (I) wherein the substituents are as defined in claim 1, useful as a pesticides, especially fungicides.
式(I)的化合物,其中取代基如权利要求1所定义,作为杀虫剂特别是杀菌剂有用。
[EN] INSECTICIDAL TRIAZINONE DERIVATIVES<br/>[FR] DÉRIVÉS DE TRIAZINONE INSECTICIDES
申请人:SYNGENTA PARTICIPATIONS AG
公开号:WO2013079350A1
公开(公告)日:2013-06-06
Compounds of the formula (I) or (I'), wherein the substituents are as defined in claim 1, are useful as pesticides.
式(I)或(I')的化合物,其中取代基如权利要求1所定义的那样,可用作杀虫剂。
Novel insecticides
申请人:Syngenta Participations AG
公开号:EP2540718A1
公开(公告)日:2013-01-02
Compounds of formula I
wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts and all stereoisomers and tautomeric forms of the compounds of formula I can be used as insecticides and can be prepared in a manner known per se.
Molecules having pesticidal utility, and intermediates, compositions, and processes, related thereto
申请人:Dow AgroSciences LLC
公开号:US20180279612A1
公开(公告)日:2018-10-04
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
[EN] MOLECULES HAVING PESTICIDAL UTILITY, AND INTERMEDIATES, COMPOSITIONS, AND PROCESSES, RELATED THERETO<br/>[FR] MOLÉCULES PRÉSENTANT UNE UTILITÉ EN TANT QUE PESTICIDE, ET LEURS INTERMÉDIAIRES, COMPOSITIONS ET PROCÉDÉS
申请人:DOW AGROSCIENCES LLC
公开号:WO2017040194A1
公开(公告)日:2017-03-09
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions aga inst such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula ("Formula One").