Identification of a Novel Selective Serotonin Reuptake Inhibitor by Coupling Monoamine Transporter-Based Virtual Screening and Rational Molecular Hybridization
作者:Tammy L. Nolan、David J. Lapinsky、Jeffery N. Talbot、Martín Indarte、Yi Liu、Sankar Manepalli、Laura M. Geffert、Mary Ellen Amos、Phillip N. Taylor、Jeffry D. Madura、Christopher K. Surratt
DOI:10.1021/cn200044x
日期:2011.9.21
Ligand virtual screening (VS) using the vestibular binding pocket of a three-dimensional (3-D) monoamine transporter (MAT) computational model followed by in vitro pharmacology led to the identification of a human serotonin transporter (hSERT) inhibitor with modest affinity (hSERT K-i = 284 nM). Structural comparison of this VS-elucidated compound, denoted MI-17, to known SERT ligands led to the rational design and synthesis of DJLDU-3-79, a molecular hybrid of MI-17 and dual SERT/5-HT1A receptor antagonist SSA-426. Relative to MI-17, DJLDU-3-79 displayed 7-fold improvement in hSERT binding affinity and a 3-fold increase in [H-3]-serotonin uptake inhibition potency at hSERT-HEK cells. This hybrid compound displayed a hSERT:hDAT selectivity ratio of 50:1 and a hSERT:hNET (human norepinephrine transporter) ratio of >200:1. In mice, DJLDU-3-79 decreased immobility in the tail suspension test comparable to the SSRI fluvoxamine, suggesting that DJLDU-3-79 may possess antidepressant properties. This proof of concept study highlights MAT virtual screening as a powerful tool for identifying novel inhibitor chemotypes and chemical fragments for rational inhibitor design.