A Robust, Eco‐Friendly Access to Secondary Thioamides through the Addition of Organolithium Reagents to Isothiocyanates in Cyclopentyl Methyl Ether (CPME)
The nucleophilic addition of widely available and variously functionalized organolithiumreagents to isothiocyanates represents a straightforward, high‐yielding, one‐pot method to access secondary thioamides. The simple reaction conditions required and the broad scope (>50 cases examples) makes it a robust and reliable method to access both simple and complex thioamides, including enantiopure ones
for transamidation of thioamides by N−C(S) transacylation is reported. This process exploits the concept of site-selective N-tert-butoxycarbonyl activation, resulting in ground-state-destabilization of thioamides. The study establishes a powerful direction to the development of new molecules in chemistry and biology by rational modification of nN→π*C=S resonance of the thioamide bond.
报道了第一种通过 NC(S) 转酰基作用对硫代酰胺进行转酰胺基作用的通用、温和且高度化学选择性的方法。该过程利用了位点选择性 N-叔丁氧羰基活化的概念,导致硫代酰胺的基态不稳定。该研究通过对硫代酰胺键的n N →π* C=S共振进行合理修饰,为化学和生物学新分子的发展奠定了有力的方向。
Transition metal-free α-C<sub>sp3</sub>–H oxidative sulfuration of benzyl thiosulfates with anilines to form <i>N</i>-aryl thioamides
A metal-free approach to N-aryl thioamides fromBuntesalts and anilines in DMSO has been developed. This method tolerated a wide range of functional groups on the aromatic ring, providing an ideal way to N-aryl thioamides in good to excellent yields from cheap and easily available starting materials. A plausible mechanism was also proposed based on the X-ray single crystal diffraction, NMR and MS
The first examples of thiazol-5-ylidene complexes featuring group 9, 10 and 11 metal centers, have been prepared by deprotonation of a series of 2,3,4-triaryl-susbtituted thiazolium salts in the presence of the corresponding transition metal precursor.