Structure-based redesign of an edema toxin inhibitor
摘要:
Edema factor (EF) toxin of Bacillus anthracis (NIAID category A), and several other toxins from NIAID category B Biodefense target bacteria are adenylyl cyclases or adenylyl cyclase agonists that catalyze the conversion of ATP to 3',5'-cyclic adenosine monophosphate (cAMP). We previously identified compound 1 (3-[(9-oxo-9H-fluorene-1-carbonyl)-amino]-benzoic acid), that inhibits EF activity in cultured mammalian cells, and reduces diarrhea caused by enterotoxigenic Escherichia coli (ETEC) at an oral dosage of 15 mu g/mouse. Here, molecular docking was used to predict improvements in potency and solubility of new derivatives of compound 1 in inhibiting edema toxin (ET)-catalyzed stimulation of cyclic AMP production in murine monocyte-macrophage cells (RAW 264.7). Structure-activity relationship (SAR) analysis of the bioassay results for 22 compounds indicated positions important for activity. Several derivatives demonstrated superior pharmacological properties compared to our initial lead compound, and are promising candidates to treat anthrax infections and diarrheal diseases induced by toxin-producing bacteria. (C) 2011 Elsevier Ltd. All rights reserved.
Methods and Compositions to Inhibit Edema Factor and Adenylyl Cyclase
申请人:Schein Catherine H.
公开号:US20090093519A1
公开(公告)日:2009-04-09
Small molecules and their derivatives are described for the treatment and/or prevention of intestinal fluid loss. Also disclosed are methods of using said molecules and their derivatives to treat and/or prevent conditions associated with increased levels of 3′,5′-adenosine monophosphate. Specific compositions of the invention are also novel.
METHODS AND COMPOSITIONS TO INHIBIT EDEMA FACTOR AND ADENYLYL CYCLASE
申请人:Schein Catherine H.
公开号:US20120010233A1
公开(公告)日:2012-01-12
Small molecules and their derivatives are described for the treatment and/or prevention of intestinal fluid loss. Also disclosed are methods of using said molecules and their derivatives to treat and/or prevent conditions associated with increased levels of 3′,5′-adenosine monophosphate. Specific compositions of the invention are also novel.
Structure-based redesign of an edema toxin inhibitor
作者:Deliang Chen、Lili Ma、John J. Kanalas、Jian Gao、Jennifer Pawlik、Maria Estrella Jimenez、Mary A. Walter、Johnny W. Peterson、Scott R. Gilbertson、Catherine H. Schein
DOI:10.1016/j.bmc.2011.10.091
日期:2012.1
Edema factor (EF) toxin of Bacillus anthracis (NIAID category A), and several other toxins from NIAID category B Biodefense target bacteria are adenylyl cyclases or adenylyl cyclase agonists that catalyze the conversion of ATP to 3',5'-cyclic adenosine monophosphate (cAMP). We previously identified compound 1 (3-[(9-oxo-9H-fluorene-1-carbonyl)-amino]-benzoic acid), that inhibits EF activity in cultured mammalian cells, and reduces diarrhea caused by enterotoxigenic Escherichia coli (ETEC) at an oral dosage of 15 mu g/mouse. Here, molecular docking was used to predict improvements in potency and solubility of new derivatives of compound 1 in inhibiting edema toxin (ET)-catalyzed stimulation of cyclic AMP production in murine monocyte-macrophage cells (RAW 264.7). Structure-activity relationship (SAR) analysis of the bioassay results for 22 compounds indicated positions important for activity. Several derivatives demonstrated superior pharmacological properties compared to our initial lead compound, and are promising candidates to treat anthrax infections and diarrheal diseases induced by toxin-producing bacteria. (C) 2011 Elsevier Ltd. All rights reserved.