摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

11'-(tert-butyl)-5',17',23',37',40',42'45',47'-octamethyldispiro[cyclohexane-1,2'-[7,15,25,35]tetraazaheptacyclo[34.2.2.2(3,6).2(16,19).2(21,24).1(9,13).1(28,32)]octatetraconta[3,5,9,11,13(46),16,18,21,23,28,30,32(41),36,38,39,42,44,47]octadecaene...].. | 231613-66-4

中文名称
——
中文别名
——
英文名称
11'-(tert-butyl)-5',17',23',37',40',42'45',47'-octamethyldispiro[cyclohexane-1,2'-[7,15,25,35]tetraazaheptacyclo[34.2.2.2(3,6).2(16,19).2(21,24).1(9,13).1(28,32)]octatetraconta[3,5,9,11,13(46),16,18,21,23,28,30,32(41),36,38,39,42,44,47]octadecaene...]..
英文别名
——
11'-(tert-butyl)-5',17',23',37',40',42'45',47'-octamethyldispiro[cyclohexane-1,2'-[7,15,25,35]tetraazaheptacyclo[34.2.2.2(3,6).2(16,19).2(21,24).1(9,13).1(28,32)]octatetraconta[3,5,9,11,13(46),16,18,21,23,28,30,32(41),36,38,39,42,44,47]octadecaene...]..化学式
CAS
231613-66-4
化学式
C66H76N4O4
mdl
——
分子量
989.354
InChiKey
YVCMXVBWQBBNFO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    16.2
  • 重原子数:
    74
  • 可旋转键数:
    1
  • 环数:
    16.0
  • sp3杂化的碳原子比例:
    0.39
  • 拓扑面积:
    116
  • 氢给体数:
    4
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3-氯磺酰苯甲酰氯 、 4-[tris(4-tert-butylphenyl)methyl]aniline 、 11'-(tert-butyl)-5',17',23',37',40',42'45',47'-octamethyldispiro[cyclohexane-1,2'-[7,15,25,35]tetraazaheptacyclo[34.2.2.2(3,6).2(16,19).2(21,24).1(9,13).1(28,32)]octatetraconta[3,5,9,11,13(46),16,18,21,23,28,30,32(41),36,38,39,42,44,47]octadecaene...]..三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 8.0h, 以7%的产率得到[2]{N-{4-{tris[4-(tert-butyl)phenyl]methyl}phenyl}-3-{{{4-{tris[4-(tert-butyl)phenyl]methyl}phenyl}amino}sulfonyl}benzamide}-{11'(tert-butyl)-5',17',23',37',40',42',45',47'-octamethyldispiro[cyclohexane-1,2'-[7,15,25,35]tetraazaheptacyclo...]}...
    参考文献:
    名称:
    Size Complementarity of Macrocyclic Cavities and Stoppers in Amide-Rotaxanes
    摘要:
    New [2]rotaxanes were prepared by the threading and the slipping procedure, the latter having the advantage of not needing templating interactions. As a consequence, the first [2]rotaxane consisting of a tetraamide macrocycle and a pure hydrocarbon thread was synthesized (see 12a in Scheme 2). Sterically matching wheels and axles being the basic requirement of a successful slipping approach to rotaxanes, mono- and bishomologous wheels 5b, c with larger diameters than the parent 5a were synthesized and mechanically connected to amide axles 10a-c which were stoppered with blocking groups of different spatial demand (Scheme 1). The deslipping kinetics of the resulting rotaxanes 8a-c and 9a,b were measured and compared; it emerges that even slight increases in the wheel size require larger stoppers to stabilize the mechanical bond. Moreover, when the deslipping rate of 8a (amide wheel and amide axle) was determined in either DMF or THF, a strong dependence on the solvent polarity, which is caused by a differing extent of intramolecular H-bonds between the wheel and the axle, was observed. As expected, no such dependence was detected for rotaxane 12a (amide wheel and hydrocarbon axle) whose components cannot interact via ii-bonds. The comparison of the sterically matching pairs of macrocycles and blocking groups, found by a systematic fitting based on the results of slipping and deslipping experiments, with other rotaxane types bearing similar stoppers allows conclusions concerning the relative cavity size of wheels of various structure.
    DOI:
    10.1002/(sici)1522-2675(19990505)82:5<746::aid-hlca746>3.0.co;2-c
  • 作为产物:
    描述:
    5-tert-butylisophthaloyl dichlorideN,N'-bis{4-[-(4-amino-3,5-dimethylphenyl)cyclohexyl]-2,6-dimethylphenyl}benzene-1,3-diacetamide三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 48.0h, 以57%的产率得到11'-(tert-butyl)-5',17',23',37',40',42'45',47'-octamethyldispiro[cyclohexane-1,2'-[7,15,25,35]tetraazaheptacyclo[34.2.2.2(3,6).2(16,19).2(21,24).1(9,13).1(28,32)]octatetraconta[3,5,9,11,13(46),16,18,21,23,28,30,32(41),36,38,39,42,44,47]octadecaene...]..
    参考文献:
    名称:
    Size Complementarity of Macrocyclic Cavities and Stoppers in Amide-Rotaxanes
    摘要:
    New [2]rotaxanes were prepared by the threading and the slipping procedure, the latter having the advantage of not needing templating interactions. As a consequence, the first [2]rotaxane consisting of a tetraamide macrocycle and a pure hydrocarbon thread was synthesized (see 12a in Scheme 2). Sterically matching wheels and axles being the basic requirement of a successful slipping approach to rotaxanes, mono- and bishomologous wheels 5b, c with larger diameters than the parent 5a were synthesized and mechanically connected to amide axles 10a-c which were stoppered with blocking groups of different spatial demand (Scheme 1). The deslipping kinetics of the resulting rotaxanes 8a-c and 9a,b were measured and compared; it emerges that even slight increases in the wheel size require larger stoppers to stabilize the mechanical bond. Moreover, when the deslipping rate of 8a (amide wheel and amide axle) was determined in either DMF or THF, a strong dependence on the solvent polarity, which is caused by a differing extent of intramolecular H-bonds between the wheel and the axle, was observed. As expected, no such dependence was detected for rotaxane 12a (amide wheel and hydrocarbon axle) whose components cannot interact via ii-bonds. The comparison of the sterically matching pairs of macrocycles and blocking groups, found by a systematic fitting based on the results of slipping and deslipping experiments, with other rotaxane types bearing similar stoppers allows conclusions concerning the relative cavity size of wheels of various structure.
    DOI:
    10.1002/(sici)1522-2675(19990505)82:5<746::aid-hlca746>3.0.co;2-c
点击查看最新优质反应信息

文献信息

  • Size Complementarity of Macrocyclic Cavities and Stoppers in Amide-Rotaxanes
    作者:Christiane Heim、Ansgar Affeld、Martin Nieger、Fritz Vögtle
    DOI:10.1002/(sici)1522-2675(19990505)82:5<746::aid-hlca746>3.0.co;2-c
    日期:1999.5.5
    New [2]rotaxanes were prepared by the threading and the slipping procedure, the latter having the advantage of not needing templating interactions. As a consequence, the first [2]rotaxane consisting of a tetraamide macrocycle and a pure hydrocarbon thread was synthesized (see 12a in Scheme 2). Sterically matching wheels and axles being the basic requirement of a successful slipping approach to rotaxanes, mono- and bishomologous wheels 5b, c with larger diameters than the parent 5a were synthesized and mechanically connected to amide axles 10a-c which were stoppered with blocking groups of different spatial demand (Scheme 1). The deslipping kinetics of the resulting rotaxanes 8a-c and 9a,b were measured and compared; it emerges that even slight increases in the wheel size require larger stoppers to stabilize the mechanical bond. Moreover, when the deslipping rate of 8a (amide wheel and amide axle) was determined in either DMF or THF, a strong dependence on the solvent polarity, which is caused by a differing extent of intramolecular H-bonds between the wheel and the axle, was observed. As expected, no such dependence was detected for rotaxane 12a (amide wheel and hydrocarbon axle) whose components cannot interact via ii-bonds. The comparison of the sterically matching pairs of macrocycles and blocking groups, found by a systematic fitting based on the results of slipping and deslipping experiments, with other rotaxane types bearing similar stoppers allows conclusions concerning the relative cavity size of wheels of various structure.
查看更多

同类化合物

2,9-二(2-苯乙基)蒽并[2,1,9-DEF:6,5,10-D’E’F’]二异喹啉-1,3,8,10(2H,9H)-四酮 (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-盐酸沙丁胺醇 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3,3''-双([[1,1''-联苯]-4-基)-[1,1''-联萘]-2,2''-二醇 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3S,3aR)-2-(3-氯-4-氰基苯基)-3-环戊基-3,3a,4,5-四氢-2H-苯并[g]吲唑-7-羧酸 (3R,3’’R,4S,4’’S,11bS,11’’bS)-(+)-4,4’’-二叔丁基-4,4’’,5,5’’-四氢-3,3’’-联-3H-二萘酚[2,1-c:1’’,2’’-e]膦(S)-BINAPINE (3-三苯基甲氨基甲基)吡啶 (3-[(E)-1-氰基-2-乙氧基-2-hydroxyethenyl]-1-氧代-1H-茚-2-甲酰胺) (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-硝基苯基)磷酸三酰胺 (2-氯-6-羟基苯基)硼酸 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1α,1'R,4β)-4-甲氧基-5''-甲基-6'-[5-(1-丙炔基-1)-3-吡啶基]双螺[环己烷-1,2'-[2H]indene (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1R,1′R,2S,2′S)-2,2′-二叔丁基-2,3,2′,3′-四氢-1H,1′H-(1,1′)二异磷哚