摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-壬基-1,3-二氧环戊烷 | 4353-06-4

中文名称
2-壬基-1,3-二氧环戊烷
中文别名
——
英文名称
2-n-nonyl-1,3-dioxolane
英文别名
2-nonyl-[1,3]dioxolane;2-Nonyl-1,3-dioxolane
2-壬基-1,3-二氧环戊烷化学式
CAS
4353-06-4
化学式
C12H24O2
mdl
——
分子量
200.321
InChiKey
QPILHXCDZYWYLQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    68-70 °C(Press: 0.001 Torr)
  • 密度:
    0.8923 g/cm3

计算性质

  • 辛醇/水分配系数(LogP):
    4.4
  • 重原子数:
    14
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    18.5
  • 氢给体数:
    0
  • 氢受体数:
    2

安全信息

  • 海关编码:
    2932999099

SDS

SDS:e8cc0de9577071d04e58b92114f56379
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-壬基-1,3-二氧环戊烷 在 polymer-supported dicyanoketene acetal 、 作用下, 反应 20.0h, 以34%的产率得到癸醛
    参考文献:
    名称:
    聚合物负载的双氰基乙烯酮乙缩醛催化的水介质中乙缩醛和甲硅烷基醚裂解反应中的新型聚合物效应
    摘要:
    使用双氰基乙烯酮缩醛 (DCKA) 和聚合物负载的 DCKA 作为 π 酸促进剂,研究了缩醛的脱保护反应,包括丙酮化物、乙烯缩醛和醇、醛和酮的 THP 醚以及伯醇和仲醇的甲硅烷基醚在乙腈水溶液和单一水性介质中。在所有反应中,发现聚合物负载的 DCKA 的催化活性远高于分子 DCKA,并观察到优异的聚合物效应。特别是在水中的脱缩醛反应中,聚合物负载的DCKA与分子DCKA的催化效率差异显着。
    DOI:
    10.1055/s-2001-16073
  • 作为产物:
    描述:
    9-decynoic acid chloride吡啶 、 lithium aluminium tetrahydride 、 乙醚硫酸乙酸乙酯 作用下, 生成 2-壬基-1,3-二氧环戊烷
    参考文献:
    名称:
    The Frontier Mountain meteorite trap (Antarctica)
    摘要:
    Abstract— The Frontier Mountain blue ice field is an important Antarctic meteorite trap which has yielded 472 meteorite specimens since its discovery in 1984. Remote sensing analyses and field campaigns from 1993 to 1999 have furnished new glaciological data on ice flow, ice thickness, bedrock topography, ice ablation and surface mass transport by wind, along with detailed descriptions of the field situation at the trap. This solid set of data combined with an updated meteorite distribution map and terrestrial ages available from literature allows us to better describe the nature of the concentration mechanism. In particular, we observe that the meteorite trap forms in a blue ice field (1) located upstream of an absolute and a shallow sub‐ice barriers; (2) characterized by compressive ice flow with horizontal velocities decreasing from 100 to <10 cm/year on approaching the obstacle; (3) undergoing mean ablation rates of 6.5 cm/year; (4) nourished by a limited snow accumulation zone extending ˜20 km upstream of the blue ice area. We also draw the following conclusions: (1) the origin of the meteorite trap can be explained according to the present‐day glaciological situation; (2) the meteorite concentration develops according to the general principles of the “ice flow model”; (3) the accumulation model can be described as “stagnant ice or slow‐moving ice against an absolute and submerged barriers”, according to the descriptive schemes present in literature; (4) the Frontier Mountain ice field is an effective trap for meteorites weighing more than ˜200 g; for smaller masses, the combination of wind and glacial drift may remove meteorites in less than a few tens of thousands of years; (5) although the activation age of the Frontier Mountain trap is not yet constrained, we infer that one of the most important findsites may be as old as 50 ka, predating the last glacial maximum.
    DOI:
    10.1111/j.1945-5100.2002.tb01105.x
点击查看最新优质反应信息

文献信息

  • Deprotection of Acetals and Silyl Ethers Using a Polymer-Supported π-Acid Catalyst: Chemoselectivity and Polymer Effect
    作者:Nobuyuki Tanaka、Yukio Masaki
    DOI:10.1055/s-1999-3000
    日期:1999.12
    A polymeric dicyanoketene acetal (DCKA), prepared from a styrene monomer bearing dicyanoketene acetal functionality, was found to be an effective and recyclable catalyst in the chemoselective deprotection of acetals and silyl ethers. A remarkable acceleration accountable for the polymer effect was observed.
    一种由带有二氰基乙烯酮缩醛功能的苯乙烯单体制备的聚合型二氰基乙烯酮缩醛(DCKA),被发现是一种有效且可回收利用的催化剂,用于乙缩醛和硅醚的选择性脱保护反应。实验观察到由于聚合物效应引起的显著加速现象。
  • Unexpected Highly Chemoselective Deprotection of the Acetals from Aldehydes and Not Ketones:  TESOTf−2,6-Lutidine Combination
    作者:Hiromichi Fujioka、Yoshinari Sawama、Nobutaka Murata、Takashi Okitsu、Ozora Kubo、Satoshi Matsuda、Yasuyuki Kita
    DOI:10.1021/ja046103p
    日期:2004.9.1
    corresponding aldehydes. Of course, the compounds, which have both acetal and hydroxyl functions afforded the compounds obtained by the usual silylation of an alcohol and deprotection of an acetal without any problem. However, deprotection of the ketals from ketones was not observed during the conversion reaction of acetals from aldehydes. This chemoselectivity was confirmed in the reactions of the compounds
    缩醛官能团被认为是羰基的良好保护基团。尽管已经开发了许多将缩醛脱保护为羰基官能团的方法,但没有方法可以在缩酮存在下对缩醛脱保护,因为通过来自缩酮的更稳定的阳离子或自由基中间体,通常的酸性或自由基反应更容易发生。另一方面,这种新方法可以以与先前报告中描述的方法相反的方式进行。即,该方法可以在缩酮的存在下使脂肪族缩醛脱保护。反应条件对于甲硅烷基化是常见的,即 TESOTf-2,6-二甲基吡啶组合。尽管 TMSOTf-2,6-二甲基吡啶组合也可以使缩醛脱保护,但它缺乏从醛和酮中脱除缩醛的化学选择性。在 CH2Cl2 中用 TESOTf 和 2,6-二甲基吡啶处理缩醛,然后进行 H2O 处理,得到相应的醛。当然,具有缩醛和羟基官能团的化合物可以毫无问题地提供通过醇的通常甲硅烷基化和缩醛的脱保护获得的化合物。然而,在缩醛与醛的转化反应过程中未观察到缩酮与酮的脱保护。这种化学选择性在同一分子中含有缩醛
  • Hydrophobic, low-loading and alkylated polystyrene-supported sulfonic acid for several organic reactions in water: remarkable effects of both the polymer structures and loading levels of sulfonic acidsElectronic supplementary information (ESI) available: Experimental details. See http://www.rsc.org/suppdata/ob/b3/b305622h/
    作者:Shinya Iimura、Kei Manabe、Sh? Kobayashi
    DOI:10.1039/b305622h
    日期:——
    A hydrophobic, low-loading and alkylated polystyrene-supported sulfonic acid (LL–ALPS–SO3H) has been developed for several organic reactions such as the hydrolysis of thioesters, the deprotection of acetals and an acetonide, and the hydration of an epoxide and an alkyne in pure water on the basis of remarkable effects of both the polymer structures and loading levels of the sulfonic acid catalysts.
    一种疏水的、低负载量且烷基化的聚苯乙烯支撑磺酸(LL–ALPS–SO3H)已被开发用于多种有机反应,如硫代酯的水解、缩酮和乙酮缩醛的保护基去除,以及环氧化物和炔烃在水中的水合反应,这是基于磺酸催化剂的聚合物结构和负载量的显著效应。
  • A Simple, Efficient and General Procedure for Acetalization of Carbonyl Compounds and Deprotection of Acetals under the Catalysis of Indium(III) Chloride
    作者:Brindaban C. Ranu、Ranjan Jana、Sampak Samanta
    DOI:10.1002/adsc.200303154
    日期:2004.3
    Indium(III) chloride efficiently catalyzes the protection of a variety of aldehydes and ketones to their corresponding 1,3-dioxolanes and dialkyl acetals in refluxing cyclohexane. On the other hand, deprotection of acetals is also achieved in refluxing aqueous methanol under the catalysis of indium(III) chloride.
    氯化铟(III)在回流的环己烷中有效催化各种醛和酮对其相应的1,3-二氧戊环和二烷基缩醛的保护。另一方面,在氯化铟(III)的催化下,在回流的甲醇水溶液中也可以实现缩醛的脱保护。
  • Reaction of the Acetals with TESOTf−Base Combination; Speculation of the Intermediates and Efficient Mixed Acetal Formation
    作者:Hiromichi Fujioka、Takashi Okitsu、Yoshinari Sawama、Nobutaka Murata、Ruichuan Li、Yasuyuki Kita
    DOI:10.1021/ja060328d
    日期:2006.5.1
    using various bases revealed the reaction and reached the best combination of TESOTf-base. It was very mild and highly chemoselective and proceeded under weakly basic conditions. Then, many functional groups such as allyl alcohol, silyl ether, acetate, methyl ether, triphenylmethyl (Tr) ether, 1,3-dithiolane, methyl ester, and tert-butyl ester could survive under these conditions. Furthermore, this methodology
    我们在这里报告了醛的缩醛出人意料的高度化学选择性脱保护。在 0 摄氏度的 CH2Cl2 中用 TESOTf-2,6-二甲基吡啶或 TESOTf-2,4,6-可力丁处理来自醛的缩醛化合物,然后在相同温度下进行 H2O 处理,导致缩醛功能转化为醛功能。该反应具有普遍性,适用于许多缩醛化合物。使用各种碱的研究揭示了反应并达到了TESOTf-碱的最佳组合。它非常温和且具有高度化学选择性,并且在弱碱性条件下进行。然后,许多官能团如烯丙醇、甲硅烷基醚、乙酸酯、甲基醚、三苯甲基 (Tr) 醚、1,3-二硫杂环戊烷、甲基酯和叔丁基酯可以在这些条件下存活。此外,这种方法可以在缩酮存在的情况下选择性地对缩醛进行脱保护,这是最典型的特征,尽管这种化学选择性很难通过其他先前报道的方法实现。包括 MS 和 NMR 研究在内的对反应的详细研究揭示了确定中间体吡啶鎓型盐结构的反应机制。这些中间体具有弱的亲电性,并成功地应用于高产率的混合缩醛的有效形成。
查看更多

同类化合物

顺式-2-甲基-4-叔-丁基-1,3-二氧戊环 辛醛丙二醇缩醛 碘丙甘油 甜瓜醛丙二醇缩醛 甘油缩甲醛 甘油缩甲醛 环辛基甲醛乙烯缩醛 环戊二烯内过氧化物 环己丙胺,1-(1,3-二噁戊环-2-基)- 环丙羧酸,2-乙酰基-,甲基酯,(1R-顺)-(9CI) 氯乙醛缩乙二醇 柠檬醛乙二醇缩醛 异戊醛丙二醇缩醛 异丁醛-丙二醇缩醛 奥普碘铵 多米奥醇 多效缩醛 壬醛丙二醇缩醛 亲和素 二氰苯乙烯酮乙烯缩醛 乙酮,1-(2-环辛烯-1-基)-,(-)-(9CI) 乙基1,3-二氧戊环-4-羧酸酯 丙炔醛乙二醇缩醛 三甲基-[(2-甲基-1,3-二氧戊环-4-基)甲基]铵碘化物 三丁基(1,3-二恶烷-2-基甲基)溴化鏻 [2-(2-碘乙基)-1,3-二氧戊环-4-基]甲醇 6,8-二氧杂二螺[2.1.4.2]十一烷 6,7-二氧杂双环[3.2.1]辛-2-烯-8-羧酸 5H,8H-呋喃并[3,4:1,5]环戊二烯并[1,2-d]-1,3-二噁唑(9CI) 5-过氧化氢基-5-甲基-1,2-二恶烷-3-酮 5-嘧啶羧酸,4-(2-呋喃基)-1,2,3,4-四氢-6-甲基-2-羰基-,1-甲基乙基酯 5-(哌嗪-1-基)苯并呋喃-2-甲酰胺 5-(1,3-二氧杂烷-2-基)呋喃-2-磺酰氯 5-(1,3-二氧戊环-2-基)戊腈 5,5-二羟基戊醛 4a-乙基-2,4a,5,6,7,7a-六氢-4-(3-羟基苯基)-1-甲基-1H-1-吡喃并英并啶 4-甲基-2-戊基-1,3-二氧戊环 4-甲基-2-十一烷基-1,3-二氧戊环 4-甲基-2-[(1E)-1-戊烯-1-基]-1,3-二氧戊环 4-甲基-2-(三氯甲基)-1,3-二氧戊环 4-甲基-2-(2-(甲硫基)乙基)-1,3-二氧戊环 4-甲基-2-(1-丙烯基)-1,3-二氧戊环 4-甲基-1,3-二氧戊环 4-烯丙基-4-甲基-2-乙烯基-1,3-二氧戊环 4-溴-3,5,5-三甲基二氧戊环-3-醇 4-乙基-1,3-二氧戊环 4-丁基-1,3-二氧戊环 4-[1,3]二氧烷-2-亚甲基丁醛 4-(氯甲基)-2-十七烷基-1,3-二氧戊环 4-(氯甲基)-2-(2-呋喃基)-1,3-二氧戊环