Rational Design, Synthesis, and Characterization of Novel Inhibitors for Human β1,4-Galactosyltransferase
摘要:
An affinity labeling reagent, uridine 5'-(6-amino-{2-[(7-bromomethyl-2-naphthyl)methoxy-carbonylmethoxy]ethoxy}acetyl-6-deoxy-alpha-D-galactopyranosyl) diphosphate (1a), was designed on the basis of 3D docking simulation and synthesized to investigate the functional role of Trp310 residue located in the small loop near the active site of human recombinant galactosyltransferase (beta GalT-1). Mass spectrometric analysis revealed that the Trp310 residue of beta GalT1 can be selectively modified with the naphthylmethyl group of compound la at the C-3 position of the indole ring. This result motivated us to synthesize novel uridine-5'-diphosphogalactose (UDP-Gal) analogues as candidates for mechanism-based inhibitors for beta GalT-1. We found that uridine 5'-(6-O-[10-(2-naphthyl)-3,6,9-trioxadecanyl]-alpha-D-galactopyranosyl) diphosphate (2) is the strongest inhibitor (K-i = 1.86 mu M) against UDP-Gal (K-m = 4.91 mu M) among compounds reported previously. A cold spray ionization time-of-flight mass spectrometry study demonstrated that the complex of this inhibitor and beta GalT-1 cannot interact with an acceptor substrate in the presence of Mn2+.
Rational Design, Synthesis, and Characterization of Novel Inhibitors for Human β1,4-Galactosyltransferase
摘要:
An affinity labeling reagent, uridine 5'-(6-amino-{2-[(7-bromomethyl-2-naphthyl)methoxy-carbonylmethoxy]ethoxy}acetyl-6-deoxy-alpha-D-galactopyranosyl) diphosphate (1a), was designed on the basis of 3D docking simulation and synthesized to investigate the functional role of Trp310 residue located in the small loop near the active site of human recombinant galactosyltransferase (beta GalT-1). Mass spectrometric analysis revealed that the Trp310 residue of beta GalT1 can be selectively modified with the naphthylmethyl group of compound la at the C-3 position of the indole ring. This result motivated us to synthesize novel uridine-5'-diphosphogalactose (UDP-Gal) analogues as candidates for mechanism-based inhibitors for beta GalT-1. We found that uridine 5'-(6-O-[10-(2-naphthyl)-3,6,9-trioxadecanyl]-alpha-D-galactopyranosyl) diphosphate (2) is the strongest inhibitor (K-i = 1.86 mu M) against UDP-Gal (K-m = 4.91 mu M) among compounds reported previously. A cold spray ionization time-of-flight mass spectrometry study demonstrated that the complex of this inhibitor and beta GalT-1 cannot interact with an acceptor substrate in the presence of Mn2+.
An affinity labeling reagent, uridine 5'-(6-amino-2-[(7-bromomethyl-2-naphthyl)methoxy-carbonylmethoxy]ethoxy}acetyl-6-deoxy-alpha-D-galactopyranosyl) diphosphate (1a), was designed on the basis of 3D docking simulation and synthesized to investigate the functional role of Trp310 residue located in the small loop near the active site of human recombinant galactosyltransferase (beta GalT-1). Mass spectrometric analysis revealed that the Trp310 residue of beta GalT1 can be selectively modified with the naphthylmethyl group of compound la at the C-3 position of the indole ring. This result motivated us to synthesize novel uridine-5'-diphosphogalactose (UDP-Gal) analogues as candidates for mechanism-based inhibitors for beta GalT-1. We found that uridine 5'-(6-O-[10-(2-naphthyl)-3,6,9-trioxadecanyl]-alpha-D-galactopyranosyl) diphosphate (2) is the strongest inhibitor (K-i = 1.86 mu M) against UDP-Gal (K-m = 4.91 mu M) among compounds reported previously. A cold spray ionization time-of-flight mass spectrometry study demonstrated that the complex of this inhibitor and beta GalT-1 cannot interact with an acceptor substrate in the presence of Mn2+.