摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-Benzoyl-5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2'-deoxy-3'-O-[(1,1-dimethylethyl)diphenylsilyl]Adenosine | 184229-75-2

中文名称
——
中文别名
——
英文名称
N-Benzoyl-5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2'-deoxy-3'-O-[(1,1-dimethylethyl)diphenylsilyl]Adenosine
英文别名
N-[9-[(2R,4S,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(diphenyl)silyl]oxyoxolan-2-yl]purin-6-yl]benzamide
N-Benzoyl-5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2'-deoxy-3'-O-[(1,1-dimethylethyl)diphenylsilyl]Adenosine化学式
CAS
184229-75-2
化学式
C54H53N5O6Si
mdl
——
分子量
896.13
InChiKey
BCBYTQUYYFYXNM-OFHDNNAJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    1.19±0.1 g/cm3(Temp: 20 °C; Press: 760 Torr)(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    9.34
  • 重原子数:
    66
  • 可旋转键数:
    16
  • 环数:
    9.0
  • sp3杂化的碳原子比例:
    0.22
  • 拓扑面积:
    119
  • 氢给体数:
    1
  • 氢受体数:
    9

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Alteration of DNA Primary Structure by DNA Topoisomerase I. Isolation of the Covalent Topoisomerase I−DNA Binary Complex in Enzymatically Competent Form
    摘要:
    DNA ligation by DNA topoisomerase I was investigated employing synthetic DNA substrates containing a single strand nick. Site-specific cleavage of the DNA by topoisomerase I in proximity to the nick resulted in uncoupling of the cleavage and ligation reactions of the enzyme, thereby trapping the covalent enzyme-DNA intermediate. DNA cleavage could be reversed by the addition of acceptor oligonucleotides containing a free 5'-OH group and capable of hybridizing to the noncleaved strand of the ''suicide substrates''. Utilizing accepters with partial complementarity, modification of nucleic acid structure has been obtained. Modifications included the formation of DNA insertions, deletions, and mismatches. To further evaluate the potential of topoisomerase I to mediate structural transformations of DNA, acceptor oligonucleotides containing nucleophiles other than OH groups at the 5'-end were studied as substrates for the topoisomerase I-mediated ligation reaction. Toward this end, oligonucleotides containing 5'-thio, amino, and hydroxymethylene moieties were synthesized. Initial investigations utilizing a coupled cleavage-ligation assay suggested that only the modified acceptor containing an additional methylene group underwent efficient enzyme-mediated ligation. However, as linear DNA is not a preferred substrate for topoisomerase I, the enzyme-DNA intermediate was purified to homogeneity, thereby allowing investigation of the ligation reaction independent of the forward reaction that formed the covalent binary complex. The isolated complex consisted of equimolar enzyme and DNA, with topoisomerase I covalently bound to a specific site on the DNA duplex in an enzymatically competent form. Displacement of the enzyme-linked tyrosine moiety of the enzyme-DNA binary complex was effected by all the modified acceptor oligonucleotides, affording unnatural internucleosidic linkages at a specific site. Characterization of the formed linkages was effected both by enzymatic and chemical degradation studies. Comparative analysis revealed overall differences in the efficiency and rate of the topoisomerase I-mediated ligation of the modified acceptors. Moreover, the facility of ligation of the amino acceptor was significantly enhanced at increasing pH values. In addition, the method utilized to obtain the topoisomerase I-DNA intermediate is capable of affording large quantities required for further mechanistic and physicochemical characterization of the formed binary complex.
    DOI:
    10.1021/ja961788h
  • 作为产物:
    描述:
    N6-苯甲酰基-5'-O-(4,4'-二甲氧基三苯基)-2'-脱氧腺苷叔丁基二苯基氯硅烷咪唑 作用下, 以 二氯甲烷 为溶剂, 反应 12.0h, 以78%的产率得到N-Benzoyl-5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2'-deoxy-3'-O-[(1,1-dimethylethyl)diphenylsilyl]Adenosine
    参考文献:
    名称:
    Alteration of DNA Primary Structure by DNA Topoisomerase I. Isolation of the Covalent Topoisomerase I−DNA Binary Complex in Enzymatically Competent Form
    摘要:
    DNA ligation by DNA topoisomerase I was investigated employing synthetic DNA substrates containing a single strand nick. Site-specific cleavage of the DNA by topoisomerase I in proximity to the nick resulted in uncoupling of the cleavage and ligation reactions of the enzyme, thereby trapping the covalent enzyme-DNA intermediate. DNA cleavage could be reversed by the addition of acceptor oligonucleotides containing a free 5'-OH group and capable of hybridizing to the noncleaved strand of the ''suicide substrates''. Utilizing accepters with partial complementarity, modification of nucleic acid structure has been obtained. Modifications included the formation of DNA insertions, deletions, and mismatches. To further evaluate the potential of topoisomerase I to mediate structural transformations of DNA, acceptor oligonucleotides containing nucleophiles other than OH groups at the 5'-end were studied as substrates for the topoisomerase I-mediated ligation reaction. Toward this end, oligonucleotides containing 5'-thio, amino, and hydroxymethylene moieties were synthesized. Initial investigations utilizing a coupled cleavage-ligation assay suggested that only the modified acceptor containing an additional methylene group underwent efficient enzyme-mediated ligation. However, as linear DNA is not a preferred substrate for topoisomerase I, the enzyme-DNA intermediate was purified to homogeneity, thereby allowing investigation of the ligation reaction independent of the forward reaction that formed the covalent binary complex. The isolated complex consisted of equimolar enzyme and DNA, with topoisomerase I covalently bound to a specific site on the DNA duplex in an enzymatically competent form. Displacement of the enzyme-linked tyrosine moiety of the enzyme-DNA binary complex was effected by all the modified acceptor oligonucleotides, affording unnatural internucleosidic linkages at a specific site. Characterization of the formed linkages was effected both by enzymatic and chemical degradation studies. Comparative analysis revealed overall differences in the efficiency and rate of the topoisomerase I-mediated ligation of the modified acceptors. Moreover, the facility of ligation of the amino acceptor was significantly enhanced at increasing pH values. In addition, the method utilized to obtain the topoisomerase I-DNA intermediate is capable of affording large quantities required for further mechanistic and physicochemical characterization of the formed binary complex.
    DOI:
    10.1021/ja961788h
点击查看最新优质反应信息

文献信息

  • A mild and highly selective N-benzoylation of cytosine and adenine bases in nucleosides with N-benzoyltetrazole
    作者:Balkrishen Bhat、Yogesh S. Sanghvi
    DOI:10.1016/s0040-4039(97)10423-3
    日期:1997.12
    N-Benzoyltetrazole has been developed as a mild and selective reagent for monobenzoylation of the exocyclic amino group in nucleic acid bases. its usefulness is demonstrated by protection of adenine and cytosine bases, an important procedure in the nucleic acid chemistry field. (C) 1997 Elsevier Science Ltd.
  • Alteration of DNA Primary Structure by DNA Topoisomerase I. Isolation of the Covalent Topoisomerase I−DNA Binary Complex in Enzymatically Competent Form
    作者:Kristine A. Henningfeld、Tuncer Arslan、Sidney M. Hecht
    DOI:10.1021/ja961788h
    日期:1996.1.1
    DNA ligation by DNA topoisomerase I was investigated employing synthetic DNA substrates containing a single strand nick. Site-specific cleavage of the DNA by topoisomerase I in proximity to the nick resulted in uncoupling of the cleavage and ligation reactions of the enzyme, thereby trapping the covalent enzyme-DNA intermediate. DNA cleavage could be reversed by the addition of acceptor oligonucleotides containing a free 5'-OH group and capable of hybridizing to the noncleaved strand of the ''suicide substrates''. Utilizing accepters with partial complementarity, modification of nucleic acid structure has been obtained. Modifications included the formation of DNA insertions, deletions, and mismatches. To further evaluate the potential of topoisomerase I to mediate structural transformations of DNA, acceptor oligonucleotides containing nucleophiles other than OH groups at the 5'-end were studied as substrates for the topoisomerase I-mediated ligation reaction. Toward this end, oligonucleotides containing 5'-thio, amino, and hydroxymethylene moieties were synthesized. Initial investigations utilizing a coupled cleavage-ligation assay suggested that only the modified acceptor containing an additional methylene group underwent efficient enzyme-mediated ligation. However, as linear DNA is not a preferred substrate for topoisomerase I, the enzyme-DNA intermediate was purified to homogeneity, thereby allowing investigation of the ligation reaction independent of the forward reaction that formed the covalent binary complex. The isolated complex consisted of equimolar enzyme and DNA, with topoisomerase I covalently bound to a specific site on the DNA duplex in an enzymatically competent form. Displacement of the enzyme-linked tyrosine moiety of the enzyme-DNA binary complex was effected by all the modified acceptor oligonucleotides, affording unnatural internucleosidic linkages at a specific site. Characterization of the formed linkages was effected both by enzymatic and chemical degradation studies. Comparative analysis revealed overall differences in the efficiency and rate of the topoisomerase I-mediated ligation of the modified acceptors. Moreover, the facility of ligation of the amino acceptor was significantly enhanced at increasing pH values. In addition, the method utilized to obtain the topoisomerase I-DNA intermediate is capable of affording large quantities required for further mechanistic and physicochemical characterization of the formed binary complex.
查看更多

同类化合物

(3-三苯基甲氨基甲基)吡啶 非马沙坦杂质1 隐色甲紫-d6 隐色孔雀绿-d6 隐色孔雀绿 隐色乙基结晶紫 降钙素杂质10 酸性黄117 酸性蓝119 酚酞啉 酚酞二硫酸钾水合物 萘,1-甲氧基-3-甲基 苯酚,4-(1,1-二苯基丙基)- 苯甲醇,4-溴-a-(4-溴苯基)-a-苯基- 苯甲酸,4-(羟基二苯甲基)-,甲基酯 苯甲基N-[(2(三苯代甲基四唑-5-基-1,1联苯基-4-基]-甲基-2-氨基-3-甲基丁酸酯 苯基双-(对二乙氨基苯)甲烷 苯基二甲苯基甲烷 苯基二[2-甲基-4-(二乙基氨基)苯基]甲烷 苯基{二[4-(三氟甲基)苯基]}甲醇 苯基-二(2-羟基-5-氯苯基)甲烷 苄基2,3,4-三-O-苄基-6-O-三苯甲基-BETA-D-吡喃葡萄糖苷 苄基 5-氨基-5-脱氧-2,3-O-异亚丙基-6-O-三苯甲基呋喃己糖苷 苄基 2-乙酰氨基-2-脱氧-6-O-三苯基-甲基-alpha-D-吡喃葡萄糖苷 苄基 2,3-O-异亚丙基-6-三苯甲基-alpha-D-甘露呋喃糖 膦酸,1,2-乙二基二(磷羧基甲基)亚氨基-3,1-丙二基次氮基<三价氮基>二(亚甲基)四-,盐钠 脱氢奥美沙坦-2三苯甲基奥美沙坦脂 美托咪定杂质28 绿茶提取物茶多酚陕西龙孚 结晶紫 磷,三(4-甲氧苯基)甲基-,碘化 碱性蓝 硫代硫酸氢 S-[2-[(3,3,3-三苯基丙基)氨基]乙基]酯 盐酸三苯甲基肼 白孔雀石绿-d5 甲酮,(反-4-氨基-4-甲基环己基)-4-吗啉基- 甲基三苯基甲基醚 甲基6-O-(三苯基甲基)-ALPHA-D-吡喃甘露糖苷三苯甲酸酯 甲基3,4-O-异亚丙基-2-O-甲基-6-O-三苯甲基吡喃己糖苷 甲基2-甲基-N-{[4-(三氟甲基)苯基]氨基甲酰}丙氨酸酸酯 甲基2,3,4-三-O-苯甲酰基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-苄基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-(苯基甲基)-6-O-(三苯基甲基)-ALPHA-D-吡喃半乳糖苷 甲基-6-O-三苯基甲基-alpha-D-吡喃葡萄糖苷 甲基(1-trityl-1H-imidazol-4-yl)乙酸酯 甲基 2,3,4-三-O-苄基-6-O-三苯基甲基-ALPHA-D-吡喃甘露糖苷 环丙胺,1-(1-甲基-1-丙烯-1-基)- 溶剂紫9 溴化N,N,N-三乙基-2-(三苯代甲基氧代)乙铵 海涛林