Structure–activity studies on the side chain of a simplified analog of aplysiatoxin (aplog-1) with anti-proliferative activity
摘要:
We have recently developed a simplified analog of aplysiatoxin (aplog-1) as an activator of protein kinase C (PKC) with anti-proliferative activity like bryostain 1. To identify sites in aplog-1 that could be readily modified to optimize therapeutic performance and to develop a molecular probe for examining the analog's mode of action, substituent effects on the phenol ring were systematically examined. Whereas hydrophilic acetamido derivatives were less active than aplog-1 in inhibiting cancer cell growth and binding to PKCS, introduction of hydrophobic bromine and iodine atoms enhanced both biological activities. The anti-proliferative activity was found to correlate closely with molecular hydrophobicity, and maximal activity was observed at a log P value of 4.0-4.5. On the other hand, an induction test with Epstein-Barr virus early antigen demonstrated that these derivatives have less tumor-promoting activity in vitro than aplog-1 regardless of the hydrophobicity of their substituents. These results would facilitate rapid preparation of molecular probes to examine the mechanism of the unique biological activities of aplog-1. (C) 2013 Elsevier Ltd. All rights reserved.
We have recently developed a simplified analog of aplysiatoxin (aplog-1) as an activator of protein kinase C (PKC) with anti-proliferative activity like bryostain 1. To identify sites in aplog-1 that could be readily modified to optimize therapeutic performance and to develop a molecular probe for examining the analog's mode of action, substituent effects on the phenol ring were systematically examined. Whereas hydrophilic acetamido derivatives were less active than aplog-1 in inhibiting cancer cell growth and binding to PKCS, introduction of hydrophobic bromine and iodine atoms enhanced both biological activities. The anti-proliferative activity was found to correlate closely with molecular hydrophobicity, and maximal activity was observed at a log P value of 4.0-4.5. On the other hand, an induction test with Epstein-Barr virus early antigen demonstrated that these derivatives have less tumor-promoting activity in vitro than aplog-1 regardless of the hydrophobicity of their substituents. These results would facilitate rapid preparation of molecular probes to examine the mechanism of the unique biological activities of aplog-1. (C) 2013 Elsevier Ltd. All rights reserved.