摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-Oxo-2,3-dihydro-1H-benzo[f]thiochromene-3-carboxylic acid | 1266154-79-3

中文名称
——
中文别名
——
英文名称
1-Oxo-2,3-dihydro-1H-benzo[f]thiochromene-3-carboxylic acid
英文别名
1-oxo-2,3-dihydrobenzo[f]thiochromene-3-carboxylic acid
1-Oxo-2,3-dihydro-1H-benzo[f]thiochromene-3-carboxylic acid化学式
CAS
1266154-79-3
化学式
C14H10O3S
mdl
——
分子量
258.298
InChiKey
VAPMPOATMNXVLB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    18
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.14
  • 拓扑面积:
    79.7
  • 氢给体数:
    1
  • 氢受体数:
    4

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Reversing the direction in a light-driven rotary molecular motor
    摘要:
    生物旋转电机可以通过改变旋转运动的方向来改变其机械功能。在人工分子马达中实现类似的旋转方向逆转是一项基本的立体化学挑战:如何在不影响系统自主单向旋转行为的情况下将顺时针运动转变为逆时针运动。本文报告了一种可多级控制旋转运动的新型分子马达,在这种马达中,光动力旋转的方向可通过碱催化的外嵌合作用逆转。关键步骤是在 360° 单向旋转周期中,光化学生成的不太稳定异构体的去质子化和再质子化,立体中心的构型完全反转。改变方向的能力是实现具有自适应功能行为的机械分子系统的重要一步。生物旋转电机可以通过改变旋转运动的方向来改变其机械功能。现在,研究人员设计出了一种人工合成的光驱动旋转电机,通过碱基诱导的外嵌合作用改变分子马达的手性,就可以根据指令逆转旋转方向。
    DOI:
    10.1038/nchem.872
  • 作为产物:
    描述:
    在 aluminum (III) chloride 作用下, 以 二氯甲烷 为溶剂, 生成 1-Oxo-2,3-dihydro-1H-benzo[f]thiochromene-3-carboxylic acid
    参考文献:
    名称:
    Reversing the direction in a light-driven rotary molecular motor
    摘要:
    生物旋转电机可以通过改变旋转运动的方向来改变其机械功能。在人工分子马达中实现类似的旋转方向逆转是一项基本的立体化学挑战:如何在不影响系统自主单向旋转行为的情况下将顺时针运动转变为逆时针运动。本文报告了一种可多级控制旋转运动的新型分子马达,在这种马达中,光动力旋转的方向可通过碱催化的外嵌合作用逆转。关键步骤是在 360° 单向旋转周期中,光化学生成的不太稳定异构体的去质子化和再质子化,立体中心的构型完全反转。改变方向的能力是实现具有自适应功能行为的机械分子系统的重要一步。生物旋转电机可以通过改变旋转运动的方向来改变其机械功能。现在,研究人员设计出了一种人工合成的光驱动旋转电机,通过碱基诱导的外嵌合作用改变分子马达的手性,就可以根据指令逆转旋转方向。
    DOI:
    10.1038/nchem.872
点击查看最新优质反应信息

文献信息

  • Reversing the direction in a light-driven rotary molecular motor
    作者:Nopporn Ruangsupapichat、Michael M. Pollard、Syuzanna R. Harutyunyan、Ben L. Feringa
    DOI:10.1038/nchem.872
    日期:2011.1
    Biological rotary motors can alter their mechanical function by changing the direction of rotary motion. Achieving a similar reversal of direction of rotation in artificial molecular motors presents a fundamental stereochemical challenge: how to change from clockwise to anticlockwise motion without compromising the autonomous unidirectional rotary behaviour of the system. A new molecular motor with multilevel control of rotary motion is reported here, in which the direction of light-powered rotation can be reversed by base-catalysed epimerization. The key steps are deprotonation and reprotonation of the photochemically generated less-stable isomers during the 360° unidirectional rotary cycle, with complete inversion of the configuration at the stereogenic centre. The ability to change directionality is an essential step towards mechanical molecular systems with adaptive functional behaviour. Biological rotary motors can alter their mechanical function by changing the direction of rotary motion. Now, researchers have designed a synthetic light-driven rotary motor in which the direction of rotation can be reversed on command by changing the chirality of the molecular motor through base-induced epimerization.
    生物旋转电机可以通过改变旋转运动的方向来改变其机械功能。在人工分子马达中实现类似的旋转方向逆转是一项基本的立体化学挑战:如何在不影响系统自主单向旋转行为的情况下将顺时针运动转变为逆时针运动。本文报告了一种可多级控制旋转运动的新型分子马达,在这种马达中,光动力旋转的方向可通过碱催化的外嵌合作用逆转。关键步骤是在 360° 单向旋转周期中,光化学生成的不太稳定异构体的去质子化和再质子化,立体中心的构型完全反转。改变方向的能力是实现具有自适应功能行为的机械分子系统的重要一步。生物旋转电机可以通过改变旋转运动的方向来改变其机械功能。现在,研究人员设计出了一种人工合成的光驱动旋转电机,通过碱基诱导的外嵌合作用改变分子马达的手性,就可以根据指令逆转旋转方向。
查看更多