Suzuki–Miyaura Coupling of Halophenols and Phenol Boronic Acids: Systematic Investigation of Positional Isomer Effects and Conclusions for the Synthesis of Phytoalexins from Pyrinae
摘要:
The Suzuki-Miyaura couplings of o-, m-, and p-halophenols with o-, m-, and p-phenol boronic acids were investigated for all combinations under standardized conditions, using Pd/C as a heterogeneous catalyst and water as a solvent. In the case of iodophenols, conventional heating was used, while for bromophenols significantly better results could be obtained using microwave irradiation. This systematic study revealed that 2,4'-biphenol is particularly difficult to access, irrespective of the starting materials used, but that these difficulties can be overcome by using different additives. The conclusions drawn from this investigation allowed us to identify conditions for the protecting group-free or minimized total synthesis of biaryl-type phytoalexins. These compounds possess antibacterial activity and are produced by fruit trees as a response to microbial infection.
Suzuki–Miyaura Coupling of Halophenols and Phenol Boronic Acids: Systematic Investigation of Positional Isomer Effects and Conclusions for the Synthesis of Phytoalexins from Pyrinae
作者:Bernd Schmidt、Martin Riemer
DOI:10.1021/jo500675a
日期:2014.5.2
The Suzuki-Miyaura couplings of o-, m-, and p-halophenols with o-, m-, and p-phenol boronic acids were investigated for all combinations under standardized conditions, using Pd/C as a heterogeneous catalyst and water as a solvent. In the case of iodophenols, conventional heating was used, while for bromophenols significantly better results could be obtained using microwave irradiation. This systematic study revealed that 2,4'-biphenol is particularly difficult to access, irrespective of the starting materials used, but that these difficulties can be overcome by using different additives. The conclusions drawn from this investigation allowed us to identify conditions for the protecting group-free or minimized total synthesis of biaryl-type phytoalexins. These compounds possess antibacterial activity and are produced by fruit trees as a response to microbial infection.