Divergent Syntheses of All Possible Optically Active Regioisomers of myo-Inositol Tris- and Tetrakisphosphates
摘要:
Since the discovery Of D-myo-inositol 1,4,5-trisphosphate, which plays a pivotal role as a second messenger in transmembrane signaling, the scope of the phosphoinositide-based signaling processes has been continually expanding. However, the clear understanding of the molecular signal transduction mechanisms including the functions of newly found IPn is still lacking. As a continuing effort to our previously reported syntheses of all possible 39 optically inactive regioisomers of myoinositol phosphates (IPn; n = 1-6), we synthesized all possible optically active regioisomers of myo-IP3 and myo-IP4 using chiral IBz(3)s and IBz(2)s, respectively. A series of procedures involving CRL-catalyzed enzymatic resolution of racemic 1,2:5,6-di-O-isopropylidene-myo-inositoI and base-catalyzed benzoyl migration in tri- and dibenzoyl-isopropylidene-myo-inositol afforded eight enantiomeric pairs of IBz(3) and six enantiomeric pairs of IBz(2), respectively. Phosphorylation of these intermediates by the phosphitylation and oxidation procedure gave the target products.
Divergent Syntheses of All Possible Optically Active Regioisomers of myo-Inositol Tris- and Tetrakisphosphates
摘要:
Since the discovery Of D-myo-inositol 1,4,5-trisphosphate, which plays a pivotal role as a second messenger in transmembrane signaling, the scope of the phosphoinositide-based signaling processes has been continually expanding. However, the clear understanding of the molecular signal transduction mechanisms including the functions of newly found IPn is still lacking. As a continuing effort to our previously reported syntheses of all possible 39 optically inactive regioisomers of myoinositol phosphates (IPn; n = 1-6), we synthesized all possible optically active regioisomers of myo-IP3 and myo-IP4 using chiral IBz(3)s and IBz(2)s, respectively. A series of procedures involving CRL-catalyzed enzymatic resolution of racemic 1,2:5,6-di-O-isopropylidene-myo-inositoI and base-catalyzed benzoyl migration in tri- and dibenzoyl-isopropylidene-myo-inositol afforded eight enantiomeric pairs of IBz(3) and six enantiomeric pairs of IBz(2), respectively. Phosphorylation of these intermediates by the phosphitylation and oxidation procedure gave the target products.