Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal–Organic Framework Thin Film
摘要:
Molecular hydrogen evolution catalysts (HECs) are synthetically tunable and often exhibit high activity, but they are also hampered by stability concerns and practical limitations associated with their use in the homogeneous phase. Their incorporation as integral linker units in metal-organic frameworks (MOFs) can remedy these shortcomings. Moreover, the extended three-dimensional structure of MOFs gives rise to high catalyst loadings per geometric surface area. Herein, we report a new MOF that exclusively consists of cobaloximes, a widely studied HEC, that act as metallo-linkers between hexanuclear zirconium clusters. When grown on conducting substrates and under applied reductive potential, the cobaloxime linkers promote electron transport through the film as well as function as molecular HECs. The obtained turnover numbers are orders of magnitude higher than those of any other comparable cobaloxime system, and the molecular integrity of the cobaloxime catalysts is maintained for at least 18 h of electrocatalysis. Being one of the very few hydrogen evolving electrocatalytic MOFs based on a redox-active metallo-linker, this work explores uncharted terrain for greater catalyst pathways.
Isoreticular Linker Substitution in Conductive Metal–Organic Frameworks with Through‐Space Transport Pathways
作者:Lilia S. Xie、Sarah S. Park、Michał J. Chmielewski、Hanyu Liu、Ruby A. Kharod、Luming Yang、Michael G. Campbell、Mircea Dincă
DOI:10.1002/ange.202004697
日期:2020.10.26
chemistry concepts to electrically conductive three‐dimensional metal–organicframeworks (MOFs) has been challenging, particularly for cases in which strong interactions between electroactive linkers create the charge transportpathways. Here, we report the successful replacement of tetrathiafulvalene (TTF) with a nickel glyoximate core in a family of isostructural conductive MOFs with Mn2+, Zn2+, and Cd2+
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
reversibly control the fluorescent “ON” and “OFF” states. In this study, we demonstrated the red-color fluorescence switching of a perylenebisimide (PBI) derivative by using a fast photochromic [2.2]paracyclophane-bridged imidazole dimer. The transient colored biradical species as the fluorescence quencher is generated upon UV light irradiation. Because the biradical species has broad absorption bands
Esterification of an exchange solvent enriched composition
申请人:Parker Randolph Kenny
公开号:US20060264664A1
公开(公告)日:2006-11-23
A process is provided for producing an enriched carboxylic acid compositions produced by contacting composition comprising a carboxylic acid with an enrichment feed in an enrichment zone to form an enriched carboxylic acid composition. This invention also relates to a process and the resulting compositions for removing catalyst from a carboxylic acid composition to produce a post catalyst removal composition.
A process is provided for producing an enriched carboxylic acid compositions produced by contacting composition comprising a carboxylic acid with an enrichment feed in an enrichment zone to form an enriched carboxylic acid composition. This invention also relates to a process and the resulting compositions for removing catalyst from a carboxylic acid composition to produce a post catalyst removal composition.