摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(nitrato)(5,10,15,20-tetramesitylporphyrinato)iron(III) | 258828-91-0

中文名称
——
中文别名
——
英文名称
(nitrato)(5,10,15,20-tetramesitylporphyrinato)iron(III)
英文别名
(5,10,15,20-tetramesitylporphyrinato)Fe(III)(nitrato);(5,10,15,20-tetramesitylporphyrinato)Fe(NO3);(TMP)Fe(NO3);Fe(TMP)(NO3)
(nitrato)(5,10,15,20-tetramesitylporphyrinato)iron(III)化学式
CAS
258828-91-0
化学式
C56H52FeN5O3
mdl
——
分子量
898.908
InChiKey
GYLWBEZNVYXWPH-WSJWEZPUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    14.04
  • 重原子数:
    65.0
  • 可旋转键数:
    4.0
  • 环数:
    9.0
  • sp3杂化的碳原子比例:
    0.21
  • 拓扑面积:
    120.18
  • 氢给体数:
    0.0
  • 氢受体数:
    5.0

反应信息

  • 作为反应物:
    描述:
    (nitrato)(5,10,15,20-tetramesitylporphyrinato)iron(III)臭氧二氯甲烷 为溶剂, 生成 nitrate(5,10,15,20-tetramesitylporphyrinato(1-))oxoiron(IV)
    参考文献:
    名称:
    Effect of the Axial Ligand on the Reactivity of the Oxoiron(IV) Porphyrin π-Cation Radical Complex: Higher Stabilization of the Product State Relative to the Reactant State
    摘要:
    The proximal heme axial ligand plays an important role in tuning the reactivity of oxoiron(IV) porphyrin pi-cation radical species (compound I) in enzymatic and catalytic oxygenation reactions. To reveal the essence of the axial ligand effect on the-reactivity, we investigated it from a thermodynamic viewpoint. Compound I model complexes, (TMP+center dot)(FeO)-O-IV(L) (where TMP is 5,10,15,20-tetrarnesitylporphyrin and TMP+center dot is its pi-cation radical), can be provided with altered reactivity by changing the identity of the axial ligand, but the reactivity is not correlated with spectroscopic data (nu(Fe=O), redox potential, and so on) of (TMP+center dot)(FeO)-O-IV(L). Surprisingly, a clear correlation was found between the reactivity of (TMP+center dot)(FeO)-O-IV(L) and the Fe-II/Fe-III redox potential of (TMP)(FeL)-L-III, the final reaction product. This suggests that the thermodynamic stability of (TMP)(FeL)-L-III is involved in the mechanism of the axial ligand effect. Axial ligand-exchange experiments and theoretical calculations demonstrate a linear free-energy relationship, in which the axial ligand modulates the reaction free energy by changing the thermodynamic stability of (TMP)Fe-III(L) to a greater extent than (TMP+center dot)(FeO)-O-IV(L). The linear free energy relationship could be found for a wide range of anionic axial ligands and for various types of reactions, such as epoxidation, demethylation, and hydrogen abstraction reactions. The essence of the axial ligand effect is neither the electron donor ability of the axial ligand nor the electron affinity of compound I, but the binding ability of the axial ligand (the stabilization by the axial ligand). An axial ligand that binds more strongly makes (TMP)Fe-III(L) more stable and (TMP+center dot)(FeO)-O-IV(L) more reactive. All results indicate that the axial ligand controls the reactivity of compound I (the stability of the transition state) by the stability of the ground state of the final reaction product and not by compound I itself.
    DOI:
    10.1021/ic3006597
  • 作为产物:
    描述:
    nitrate(5,10,15,20-tetramesitylporphyrinato(1-))oxoiron(IV) 在 1,4-cyclohexadiene or N,N-dimethyl-p-nitroaniline 作用下, 以 二氯甲烷 为溶剂, 生成 (nitrato)(5,10,15,20-tetramesitylporphyrinato)iron(III)
    参考文献:
    名称:
    Effect of the Axial Ligand on the Reactivity of the Oxoiron(IV) Porphyrin π-Cation Radical Complex: Higher Stabilization of the Product State Relative to the Reactant State
    摘要:
    The proximal heme axial ligand plays an important role in tuning the reactivity of oxoiron(IV) porphyrin pi-cation radical species (compound I) in enzymatic and catalytic oxygenation reactions. To reveal the essence of the axial ligand effect on the-reactivity, we investigated it from a thermodynamic viewpoint. Compound I model complexes, (TMP+center dot)(FeO)-O-IV(L) (where TMP is 5,10,15,20-tetrarnesitylporphyrin and TMP+center dot is its pi-cation radical), can be provided with altered reactivity by changing the identity of the axial ligand, but the reactivity is not correlated with spectroscopic data (nu(Fe=O), redox potential, and so on) of (TMP+center dot)(FeO)-O-IV(L). Surprisingly, a clear correlation was found between the reactivity of (TMP+center dot)(FeO)-O-IV(L) and the Fe-II/Fe-III redox potential of (TMP)(FeL)-L-III, the final reaction product. This suggests that the thermodynamic stability of (TMP)(FeL)-L-III is involved in the mechanism of the axial ligand effect. Axial ligand-exchange experiments and theoretical calculations demonstrate a linear free-energy relationship, in which the axial ligand modulates the reaction free energy by changing the thermodynamic stability of (TMP)Fe-III(L) to a greater extent than (TMP+center dot)(FeO)-O-IV(L). The linear free energy relationship could be found for a wide range of anionic axial ligands and for various types of reactions, such as epoxidation, demethylation, and hydrogen abstraction reactions. The essence of the axial ligand effect is neither the electron donor ability of the axial ligand nor the electron affinity of compound I, but the binding ability of the axial ligand (the stabilization by the axial ligand). An axial ligand that binds more strongly makes (TMP)Fe-III(L) more stable and (TMP+center dot)(FeO)-O-IV(L) more reactive. All results indicate that the axial ligand controls the reactivity of compound I (the stability of the transition state) by the stability of the ground state of the final reaction product and not by compound I itself.
    DOI:
    10.1021/ic3006597
点击查看最新优质反应信息

文献信息

  • Models of Nitric Oxide Synthase:  Iron(III) Porphyrin-Catalyzed Oxidation of Fluorenone Oxime to Nitric Oxide and Fluorenone
    作者:Charles C.-Y. Wang、Douglas M. Ho、John T. Groves
    DOI:10.1021/ja992373+
    日期:1999.12.1
    unusual reaction, iron porphyrin-catalyzed oxygenations of oximes with O2 were investigated. The oxidation of fluorenone oxime and a stoichiometric amount of hydroxoiron(III) porphyrin (Fe(OH)P, P = TMP and TPFPP) with O2 in benzene generated Fe(NO)P, fluorenone, and O-(9-nitro-9-fluorenyl)fluorenone oxime. The X-ray crystal structure of the oxime ether product suggests that it originated from the dimerization
    一氧化氮合酶 (NOS) 是一种含血红素的单加氧酶,可分两步催化 L-精氨酸氧化为 L-瓜氨酸和 NO。在 NOS 反应的第二步中,瓜酸和 NO 是由血红素催化的 1N-羟基精酸的 3-电子氧化产生的。为了模拟这种不寻常的反应,研究了卟啉催化的与 O2 的氧化作用。在苯中用 O2 氧化化学计量的羟 (III) 卟啉(Fe(OH)P,P = TMP 和 TPFPP),生成 Fe(NO)P、酮和 O-(9-nitro-9) -基)醚产物的 X 射线晶体结构表明它源于亚胺氧基自由基的二聚化。该反应的详细分析表明,首先与 Fe(OH)P 反应生成 5-配位,高自旋 (III) 卟啉 [Fe(oximate)P]。(III)四(2,6-二氯苯基)卟啉[Fe(酸)TDC的X射线晶体结构...
  • Factors Affecting Hydrogen-Tunneling Contribution in Hydroxylation Reactions Promoted by Oxoiron(IV) Porphyrin π-Cation Radical Complexes
    作者:Zhiqi Cong、Haruki Kinemuchi、Takuya Kurahashi、Hiroshi Fujii
    DOI:10.1021/ic501737j
    日期:2014.10.6
    transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by
    由于观察到大的氢/动力学同位素效应(KIEs),已提出具有隧穿效应的氢原子转移(H隧道)参与了细胞色素P450和合成血红素配合物催化的脂肪族羟基化反应。在目前的工作中,我们通过研究氧代(oxoiron)在氧杂蒽1,2,3,4-四氢萘)的苄基位置上的羟基化反应动力学,研究控制羟基化反应中H隧穿对H转移过程的控制因素。 IV)5,10,15,20-四氢卟啉π-阳离子自由基络合物((TMP +•)Fe IVO(L))在单周转条件下。H-同位素异构体的这些羟基化反应的Arrhenius图具有向上凹的轮廓。D同位素异构体的Arrhenius图,清晰的等渗点和产物分析排除了凹轮廓中与热相关的其他反应过程的参与。这些结果为H-隧道参与限速H-转移过程提供了证据。这些轮廓是使用从Bell隧道模型导出的方程式进行模拟的。KIE值的温度依赖性(k H / k D对这些反应确定的)表明,随着反应温度降低,
  • Effect of Imidazole and Phenolate Axial Ligands on the Electronic Structure and Reactivity of Oxoiron(IV) Porphyrin π-Cation Radical Complexes: Drastic Increase in Oxo-Transfer and Hydrogen Abstraction Reactivities
    作者:Akihiro Takahashi、Takuya Kurahashi、Hiroshi Fujii
    DOI:10.1021/ic802123m
    日期:2009.3.16
    oxoiron(IV) porphyrin π-cation radical complex was drastically increased by the imidazole and phenolate axial ligands. The reaction rate for cyclooctene epoxidation was increased 100- to 400-fold with axial coordination of imidazoles and phenolate. A similar increase was also observed for the oxidation of 1,4-cyclohexadiene,N,N-dimethyl-p-nitroaniline and hydrogen peroxide. These results suggest extreme enhancement
    为了研究轴向配体过氧化物酶过氧化氢酶化合物I的电子结构和反应性的影响,氧代(IV)卟啉π-阳离子自由基与咪唑2-甲基咪唑,4(5)-甲基咪唑和3--通过臭氧氧化5,10,15,20-四甲苯卟啉TMP)和2,7,12,17-四甲基-3,8,13,18-四甲卟啉TMTMP)。这些配合物的特征是吸收,1 H,2 H和19F NMR,电子顺磁共振(EPR)和电喷雾电离质谱(ESI-MS)光谱。发现化合物I在约650nm处的特征吸收峰是评估轴向配体的电子给体效应的良好标志。轴向配体效应不会改变卟啉π阳离子的自由基状态,TMP配合物的2u态或TMTMP配合物和化合物I的1u自由基状态。有效地转移到a 2u络合物的轴向配体中,而不是a 1u络合物复合体。最重要的是,咪唑盐轴向配体极大地提高了氧化铁(IV)卟啉π-阳离子自由基络合物的反应性。在咪唑盐的轴向配位下,环辛烯环氧化的反应
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S,2'S)-(-)-[N,N'-双(2-吡啶基甲基]-2,2'-联吡咯烷双(乙腈)铁(II)六氟锑酸盐 (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 (1'R,2'S)-尼古丁1,1'-Di-N-氧化物 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸氯苯那敏-D6 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 韦德伊斯试剂 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非布索坦杂质66 非尼拉朵 非尼拉敏 雷索替丁 阿雷地平 阿瑞洛莫 阿扎那韦中间体 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 镉,二碘四(4-甲基吡啶)- 锌,二溴二[4-吡啶羧硫代酸(2-吡啶基亚甲基)酰肼]-