摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4,7-二(5-溴-4-辛基噻吩-2-基)苯并[c][1,2,5]噻二唑 | 457931-23-6

中文名称
4,7-二(5-溴-4-辛基噻吩-2-基)苯并[c][1,2,5]噻二唑
中文别名
4,7-双(5-溴-4-正辛基-2-噻吩基)-2,1,3-苯并噻二唑;4,7-双(5-溴-4-辛基噻吩-2-基) 苯并[C][1,2,5]噻二唑
英文名称
4,7-bis(5-bromo-4-octylthiophen-2-yl)benzo[c]-[1,2,5]thiadiazole
英文别名
4,7-Bis(5-bromo-4-octylthiophen-2-yl)benzo[c][1,2,5]thiadiazole;4,7-bis(5-bromo-4-octylthiophen-2-yl)-2,1,3-benzothiadiazole
4,7-二(5-溴-4-辛基噻吩-2-基)苯并[c][1,2,5]噻二唑化学式
CAS
457931-23-6
化学式
C30H38Br2N2S3
mdl
——
分子量
682.651
InChiKey
AMYLTENEOQNKGO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    661.9±50.0 °C(Predicted)
  • 密度:
    1.351±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    14.6
  • 重原子数:
    37
  • 可旋转键数:
    16
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.53
  • 拓扑面积:
    111
  • 氢给体数:
    0
  • 氢受体数:
    5

安全信息

  • 危险性防范说明:
    P261,P264,P270,P271,P280,P301+P312+P330,P302+P352,P304+P340+P312,P305+P351+P338,P332+P313,P337+P313,P362,P403+P233,P405,P501
  • 危险性描述:
    H302,H315,H319,H335

SDS

SDS:b2587845d1209a84bc293d4ff58d206a
查看

反应信息

  • 作为反应物:
    参考文献:
    名称:
    用于染料敏化太阳能电池的有机敏化剂的侧链工程:提高性能和稳定性的策略†
    摘要:
    报道了四种专门设计用于染料敏化太阳能电池的有机染料。这些染料基于完全相同的π-共轭主链,并且仅在用作增溶基团的烷基链取代基的数量和性质上有所不同。这些敏化剂在TiO 2上最高达750 nm的可见光范围内具有出色的光吸收性能它们表现出非常相似的能级位置。在与碘基液体电解质完全相同的条件下制造和表征的太阳能电池,其性能范围为6.53%至9.05%。我们着重指出,增溶剂基团的性质和数量对太阳能电池的性能产生巨大影响。四种敏化剂性能的差异可能与电流的产生,聚集体的形成以及电极上的染料负载有关。我们还报告了带有离子液体电解质的太阳能电池,该太阳能电池在高达7300小时的加速老化条件下显示出高达7.81%的功率转换效率和良好的性能稳定性。即,含有较低比例烷基的染料会导致细胞更稳定。
    DOI:
    10.1039/c7ta00793k
  • 作为产物:
    描述:
    2,1,3-苯并噻二唑 在 bis-triphenylphosphine-palladium(II) chloride 、 N-溴代丁二酰亚胺(NBS)氢溴酸 作用下, 以 氯仿 为溶剂, 生成 4,7-二(5-溴-4-辛基噻吩-2-基)苯并[c][1,2,5]噻二唑
    参考文献:
    名称:
    Tuning the photovoltaic performance of BT-TPA chromophore based solution-processed solar cells through molecular design incorporating of bithiophene unit and fluorine-substitution
    摘要:
    A series of novel D-pi-A-pi-D typed organic small molecules (OSMs) have been designed and synthesized successfully for solution-processed bulk-heterojunction (BHJ) solar cells, consisting of thiophene (T) or bithiophene (TT) as a segment of pi-bridge, besides, incorporating benzothiadiazole (BT) or fluorinated benzothiadiazole (FBT) as the electron-withdrawing core (A), respectively. The photovoltaic (PV) performance was finely tuned via molecular design. A significantly increased short-circuit current density (Jsc) was observed for BDCTTMBT with narrow energy gap (E-g) due to the extended conjugation-length with TT-linkage, and a high open-circuit voltage (Voc) of 1.11 V was obtained for BDCTFBT due to the F-substitution with the lowest highest occupied molecular orbital (HOMO). Among them, a best power conversion efficiency (PCE) of 4.86% was achieved for BDCTFEBT based devices due to the double effect of TT-linkage and F-substitution. These results provide valuable information on design of novel PV materials. (C) 2015 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.dyepig.2015.02.017
点击查看最新优质反应信息

文献信息

  • Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications
    作者:Jianping Lu、Fushun Liang、Nicolas Drolet、Jianfu Ding、Ye Tao、Raluca Movileanu
    DOI:10.1039/b811031j
    日期:——
    A low band-gap alternating copolymer of indolocarbazole and benzothiadiazole-cored oligothiophene demonstrated balanced crystallinity and solubility; a solar cell combining this polymer with PC61BM in a preliminary test demonstrated power conversion efficiencies of 3.6%.
    吲哚咔唑与苯并噻二唑基团为核心的多噻吩低带隙交替共聚物表现出平衡的结晶性和溶解性;在初步测试中,将该聚合物与PC61BM结合用于太阳能电池,其功率转换效率达到了3.6%。
  • Development of Novel n-Type Materials Based on Benzothiadiazole Derivatives for Organic Photovoltaics: Effects of Acceptor Terminal Substituents
    作者:Yosei Shibata、Takahiro Kono、Hiroyo Usui、Yuji Yoshida
    DOI:10.1246/cl.141155
    日期:2015.5.5
    Novel n-type materials of BTD-CN (1) and BTD-CF3 (2) were synthesized for organic photovoltaics. Both materials show approximately the same HOMO–LUMO level and position of absorption peaks. However, the organic photovoltaic performance of a device with 1 is clearly higher than that with 2. In this paper, we discuss the effects of terminal substituents on film morphology, crystallinity, and photovoltaic performance. The results suggest that cyano-modified benzothiadiazole is useful because of its crystallinity, carrier recombination, and series resistance.
    合成了新型n型材料BTD-CN(1)和BTD-CF3(2)用于有机光伏。两种材料的HOMO-LUMO能级和吸收峰位置大致相同。然而,使用1的器件的有机光伏性能明显高于使用2的器件。在本文中,我们讨论了末端取代基对薄膜形态、结晶性和光伏性能的影响。结果表明,基改性的苯并噻二唑由于其结晶性、载流子复合和串联电阻而具有实用价值。
  • ORGANIC COLOURANT AND USES THEREOF IN PHOTOVOLTAIC CELLS
    申请人:COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    公开号:US20140290748A1
    公开(公告)日:2014-10-02
    The present invention relates to an organic colorant corresponding to one of the following structures (I) or (II): eD-pi-conjugated chromophore-L-A  (I) A-L-pi-conjugated chromophore-eD  (II) in which eD represents an electron donor segment; L represents a covalent bond or a spacer segment; A represents an electron attractor segment able to form a covalent bond with a semi-conductor; the pi-conjugated chromophore comprising at least two aromatic rings, at least one of which is a thiophene, selenophene or furan type ring. The present invention relates to the use thereof as photosensitizer in a photovoltaic device and said photovoltaic device.
    本发明涉及与以下结构(I)或(II)之一相对应的有机染料: eD-π-共轭色团-L-A  (I) A-L-π-共轭色团-eD  (II) 其中,eD代表电子给体片段;L代表共价键或间隔片段;A代表能够与半导体形成共价键的电子吸引片段;π-共轭色团包括至少两个芳香环,其中至少一个是噻吩吩或呋喃型环。本发明涉及将其用作光伏器件中的光敏剂以及该光伏器件。
  • Donor−Acceptor Polymers Incorporating Alkylated Dithienylbenzothiadiazole for Bulk Heterojunction Solar Cells: Pronounced Effect of Positioning Alkyl Chains
    作者:Huaxing Zhou、Liqiang Yang、Shengqiang Xiao、Shubin Liu、Wei You
    DOI:10.1021/ma902241b
    日期:2010.1.26
    4,7-Di(thiophen-2-yl)benzothiadiazole (DTBT) has been used to construct a number of donor-acceptor low band gap polymers for bulk heterojunction (BHJ) photovoltaics with high efficiency numbers. Its strong tendency to pi-stack often leads to polymers with low molecular weight and poor solubility, which could potentially be alleviated by anchoring solubilizing chains onto the DTBT unit. A systematic study of the effect of positioning alkyl chains on DTBT on properties of polymers was implemented by investigating a small library of structurally related polymers with identical Conjugated backbone. This series of donor-acceptor polymers employed a common donor unit, benzo[2,1-b:3,4-b']dithiophene (BDT). and modified DTBT as the acceptor unit. Three variations of modified DTBT units Were prepared with alkyl side chains at (a) the 5- and 6-positions of 2,1,3-benzothiadiazole (DTsolBT), (b) 3-positions of the flanking thienyl groups (3DTBT), and (c) 4-positions (4DTBT), in addition to the unmodified DTBT. Contrary to results from previous studies, optical and electrochemical studies disclosed almost identical band gap and energy levels between PBDT-4DTBT and PBDT-DTBT. These results indicated that anchoring solubilizing alkyl chains on the 4-positions of DTBT only introduced a minimum steric hindrance within BDT-DTBT maintaining the extended conjugation of the fundamental structural unit (BDT-DTBT). More importantly, the additional high molecular weight and excellent solubility of PBDT-4DTBT led to a more uniform mixture with PCBM, with better control on the film morphology. All these features of PBDT-4DTBT led to a significantly improved efficiency of related BHJ solar cells (up to 2.2% has beep, observed), triple the efficiency obtained from BHJ devices fabricated from the "conventional" PBDT-DTBT (0.72%). Our discovery reinforced the importance of high molecular weight and good solubility of donor polymers for BHJ solar cells, in addition to a low band gap and a low HOMO energy level, in order to further enhance the device efficiencies.
  • Synthesis and photovoltaic studies on novel fluorene based cross-conjugated donor-acceptor type polymers
    作者:Bhavna Sharma、Firoz Alam、Viresh Dutta、Josemon Jacob
    DOI:10.1016/j.orgel.2016.10.039
    日期:2017.1
    Direct arylation polymerization (DAP) is emerging as a promising green, cheap, simple, and efficient environment friendly method for synthesizing conjugated polymers without involving any organometallic reagent. We report fluorene based novel cross-conjugated alternate and random copolymers for polymer solar cells (PSCs), which were synthesized by DAP and/or Yamamoto polymerization under appropriate reaction conditions to obtain high molecular weight. These cross-conjugated polymers possess absorption maxima in the range of 490-520 nm and have narrow band gap (1.7-2.05 eV) which is suitable for bulk heterojuntion (BHJ) type organic solar cells. Among the synthesized polymers, the highest number average molecular weight (Mn) i.e. 43.1 kg mol(-1) was obtained for polymer P2b (poly((9H-fluoren-9-ylidene) methylene) bis((2-ethylhexyl) sulfane)-alt-4,7-di(thiophen-2-yl) benzo[c] [1,2,5] thiadiazole)), and so good polymeric films were formed for P2b. Thus, BHJ films were prepared for P2b for device performance studies and the morphology of these films was studied by atomic force microscopy (AFM). Polymer P2b was blended with the fullerene derivative [6,6]-phenyl C-71 butyric acid methyl ester (PC71BM) in different ratios and under the illumination of solar simulator with Air Mass global (AM 1.5G) irradiated at 100 mW cm(-2). Power conversion efficiency (PCE) of 1.4% has been achieved for BHJs in ratio of 1:2 of P2b: PC71BM in simply processed devices. This result indicates that cross-conjugated polymers can be tapped as potential donors for BHJs as the PCE obtained is the highest among this type of cross-conjugated polymers. (C) 2016 Elsevier B.V. All rights reserved.
查看更多

同类化合物

(5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 阿拉酸式苯-S-甲基 阿拉酸式苯 试剂4,7-Bis(5-bromo-2-thienyl)-5,6-bis(dodecyloxy)-2,1,3-benzothiadiazole 苯并恶唑-6-胺 苯并[d][1,2,3]噻二唑-6-羧酸 苯并[C][1,2,5]噻二唑-5-硼酸频那醇酯 苯并[C][1,2,5]噻二唑-4-磺酸钠 苯并[C][1,2,5]噻二唑-4-基甲醇 苯并[C][1,2,5]噻二唑-4,7-二甲醛 苯并[C][1,2,5]噻二唑-4,7-二基二硼酸 苯并[1,2,5]噻二唑-4-羧酸 苯并[1,2,5]噻二唑-4-磺酰氯 苯并[1,2,3]噻二唑-7-基胺 苯并[1,2,3]噻二唑-6-羧酸甲酯 苯并[1,2,3]噻二唑-5-基胺 苯并[1,2,3]噻二唑-4-基胺 苯2,1,3-噻重氮-5-羧酸酯 碘化(2,1,3-苯并硫杂(SIV)二唑-5-基)二甲基八氧代甲基铵 硫代磷酸S-[(2,1,3-苯并噻二唑-5-基)甲基]酯O,O-二钠盐 盐酸替扎尼定-d4 盐酸替扎尼定 灭草荒 替托尼定D4 替扎尼定杂质1 替扎尼定EP杂质C 替扎尼定 噻唑并[4,5-f]-2,1,3-苯并噻二唑,6-甲基-(6CI,8CI) 去氢替扎尼定 全氟苯并[c][1,2,5]噻二唑 [7-[2-[2-(8-硫杂-7,9-二氮杂双环[4.3.0]壬-3,5,9-三烯-7-基)乙基二巯基]乙基]-8-硫杂-7,9-二氮杂双环[4.3.0]壬-3,5,9-三烯-2-基]甲胺 Y6醛 N-甲氧基-N-甲基-2,1,3-苯并噻二唑-5-酰胺 N-(5-氯-2,1,3-苯并噻二唑-4-基)硫脲 N,N'-二硫代二(亚乙基)二(2,1,3-苯并噻二唑-5-甲胺) N'-2,1,3-苯并噻二唑-4-基-N,N-二甲基酰亚胺基甲酰胺 EA671;;二噻吩[3,2-E:2,3-G]-2,1,3-苯并噻二唑 BTQBT(升华提纯) 7H-咪唑并[4,5-g][1,2,3]苯并噻二唑 7H-咪唑并[4,5-e][1,2,3]苯并噻二唑 7-肼基[1,3]噻唑并[5,4-e][2,1,3]苯并噻二唑 7-肼基[1,3]噻唑并[4,5-e][2,1,3]苯并噻二唑 7-碘-苯并[1,2,3]噻二唑 7-硝基-苯并[1,2,5]噻二唑-4-基胺 7-硝基-1,2,3-苯并噻二唑 7-甲基[1,3]噻唑并[5,4-e][2,1,3]苯并噻二唑 7-甲基[1,3]噻唑并[4,5-e][2,1,3]苯并噻二唑 7-甲基[1,3]噻唑并[4,5-e][1,2,3]苯并噻二唑 7-溴苯并[c][1,2,5]噻二唑-4-磺酸 7-溴-苯并[D][1,2,3]噻二唑