Ligand‐Protected Au
55
with a Novel Structure and Remarkable CO
2
Electroreduction Performance
摘要:
AbstractA Au55 nanocluster with the composition of [Au55(p‐MBT)24(Ph3P)6](SbF6)3 (p‐MBT=4‐methylbenzenethiolate) is synthesized via direct reduction of gold‐phosphine and gold‐thiolate precursors. Single‐crystal X‐ray diffraction reveals that this Au55 nanocluster features a face‐centered cubic (fcc) Au55 kernel, different from the well‐known two‐shell cuboctahedral arrangement in Au55(Ph3P)12Cl6. The Au55 cluster shows a wide optical absorption band with optical energy gap (Eg=1.28 eV). It is found that the exclusion of chloride is crucial for the formation of the title cluster, otherwise rod‐like [Au25(SR)5(PPh3)10Cl2]2+ is obtained. The strategy to run synthetic reaction in the absence of halide leads to new members of phosphine/thiolate co‐protected metal nanoclusters. The Au55 nanocluster exhibits high catalytic activity and selectivity for electrochemical reduction of CO2 to CO; the Faradaic efficiency (FE) reaches 94.1 % at −0.6 V vs. reversible hydrogen electrode (RHE).