Cyanoacetamides (IV): Versatile One-Pot Route to 2-Quinoline-3-carboxamides
摘要:
Cyanoacetic acid derivatives are the starting materials for a plethora of multicomponent reaction (MCR) scaffolds. Herein, we describe scope of a valuable general protocol for the synthesis of arrays of 2-aminoquinoline-3-carboxamides from cyanoacetamides and 2-aminobenzaldehydes or heterocyclic derivatives via a Friedlander reaction variation. In many cases, the reactions involve a very convenient work up by simple precipitation and filtration. More than 40 new products are described. We foresee our protocol and the resulting derivatives becoming very valuable to greatly expanding the scaffold space of cyanoacetamide derivatives.
Cyanoacetamides (IV): Versatile One-Pot Route to 2-Quinoline-3-carboxamides
摘要:
Cyanoacetic acid derivatives are the starting materials for a plethora of multicomponent reaction (MCR) scaffolds. Herein, we describe scope of a valuable general protocol for the synthesis of arrays of 2-aminoquinoline-3-carboxamides from cyanoacetamides and 2-aminobenzaldehydes or heterocyclic derivatives via a Friedlander reaction variation. In many cases, the reactions involve a very convenient work up by simple precipitation and filtration. More than 40 new products are described. We foresee our protocol and the resulting derivatives becoming very valuable to greatly expanding the scaffold space of cyanoacetamide derivatives.
Cyanoacetamides (IV): Versatile One-Pot Route to 2-Quinoline-3-carboxamides
作者:Kan Wang、Eberhardt Herdtweck、Alexander Dömling
DOI:10.1021/co3000133
日期:2012.5.14
Cyanoacetic acid derivatives are the starting materials for a plethora of multicomponent reaction (MCR) scaffolds. Herein, we describe scope of a valuable general protocol for the synthesis of arrays of 2-aminoquinoline-3-carboxamides from cyanoacetamides and 2-aminobenzaldehydes or heterocyclic derivatives via a Friedlander reaction variation. In many cases, the reactions involve a very convenient work up by simple precipitation and filtration. More than 40 new products are described. We foresee our protocol and the resulting derivatives becoming very valuable to greatly expanding the scaffold space of cyanoacetamide derivatives.