Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of combretastatin-A4 as novel antitubulin agents
摘要:
A total of 20 novel 1,3,4-oxadiazoline analogs (6a-6t) of combretastatin A-4 with naphthalene ring were designed, synthesized, and evaluated for biological activities as potential tubulin polymerization inhibitors. Among these compounds, 6n showed the most potent antiproliferative activities against multiple cancer cell lines and retained the microtubule disrupting effects. Docking simulation was performed to insert compound 6n into the crystal structure of tubulin to determine the probable binding model. These results indicated oxadiazoline compounds bearing the naphthyl moiety are promising tubulin inhibitors. (C) 2011 Elsevier Ltd. All rights reserved.
Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of combretastatin-A4 as novel antitubulin agents
摘要:
A total of 20 novel 1,3,4-oxadiazoline analogs (6a-6t) of combretastatin A-4 with naphthalene ring were designed, synthesized, and evaluated for biological activities as potential tubulin polymerization inhibitors. Among these compounds, 6n showed the most potent antiproliferative activities against multiple cancer cell lines and retained the microtubule disrupting effects. Docking simulation was performed to insert compound 6n into the crystal structure of tubulin to determine the probable binding model. These results indicated oxadiazoline compounds bearing the naphthyl moiety are promising tubulin inhibitors. (C) 2011 Elsevier Ltd. All rights reserved.
Chikungunya virus is a re-emerging arbovirus transmitted to humans by Aedes mosquitoes, responsible for an acute febrile illness associated with painful and debilitating arthralgia, which can persist for several months or become chronic. Over the past few years, infection with this virus has spread worldwide with a previously unknown virulence. No specific antiviral treatments nor vaccines are currently available against this important pathogen. Starting from the structure of a class of selective anti-CHIKV agents previously identified in our research group, different modifications to this scaffold were rationally designed, and 69 novel small-molecule derivatives were synthesised and evaluated for their inhibition of Chikungunya virus replication in Vero cells. Further structure-activity relationships associated with this class of antiviral agents were elucidated for the original scaffolds, and novel antiviral compounds with EC50 values in the low micromolar range were identified. This work provides the foundation for further investigation of these new structures as antivirals against Chikungunya virus. (C) 2018 Elsevier Masson SAS. All rights reserved.