Herein, we report the development of a tailored cobalt catalyst system of Cp*Co(III)(LX) toward intramolecular C-H nitrene insertion of azidoformates to afford cyclic carbamates. The cobalt complexes were easy to prepare and bench-stable, thus offering a convenient reaction protocol. The catalytic reactivity was significantly improved by the electronic tuning of the bidentate LX ligands, and the observed
Aluminium-Catalysed Oxazolidinone Synthesis and their Conversion into Functional Non-Symmetrical Ureas
作者:Victor Laserna、Wusheng Guo、Arjan W. Kleij
DOI:10.1002/adsc.201500635
日期:2015.9.14
range of functionaloxazolidinones is reported. The method is based on cheap and readily available starting materials including terminal and internal (bicyclic) epoxides and phenyl carbamate. The oxazolidinones serve as highly useful synthons for the high yield preparation of non‐symmetrical ureas by nucleophilic ring‐opening affording the targeted urea compounds with excellent functional group diversity
A biocatalyticapproach towards a range of 4‐aryloxazolidinones is developed using a halohydrin dehalogenase from Ilumatobacter coccineus (HheG) as biocatalyst. The method is based on the HheG‐catalyzed α‐position regioselective ring‐opening of styrene oxide derivatives with cyanate as a nucleophile, producing the corresponding 4‐aryloxazolidinones in moderate to good yields. Synthesis of enantiopure
enantio‐ and regioselective ring‐opening of styrene oxides with cyanate was developed by using the halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1, generating the corresponding chiral 5‐aryl‐2‐oxazolidinones in up to 47% yield and 90% ee. Additionally, the origin of enantioselectivity and regioselectivity of the HheC‐catalyzed cyanate‐mediatedring‐opening process was uncovered by single