Structure–activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling
作者:Ill-Young Lee、Todd D. Gruber、Amanda Samuels、Minhan Yun、Bora Nam、Minseo Kang、Kathryn Crowley、Benjamin Winterroth、Helena I. Boshoff、Clifton E. Barry
DOI:10.1016/j.bmc.2012.10.056
日期:2013.1
A series of salicylanilides was synthesized based on a high-throughput screening hit against Mycobacterium tuberculosis. A free phenolic hydroxyl on the salicylic acid moeity is required for activity, and the structure-activity relationship of the aniline ring is largely driven by the presence of electron withdrawing groups. We synthesized 94 analogs exploring substitutions of both rings and the linker region in this series and we have identified multiple compounds with low micromolar potency. Unfortunately, cytotoxicity in a murine macrophage cell line trends with antimicrobial activity, suggesting a similar mechanism of action. We propose that salicylanilides function as proton shuttles that kill cells by destroying the cellular proton gradient, limiting their utility as potential therapeutics. Published by Elsevier Ltd.
Structure–Function Studies on IMD‐0354 Identifies Highly Active Colistin Adjuvants
作者:Ansley M. Nemeth、Akash K. Basak、Alexander W. Weig、Santiana A. Marrujo、William T. Barker、Leigh A. Jania、Tyler A. Hendricks、Ashley E. Sullivan、Patrick M. O'Connor、Roberta J. Melander、Beverly H. Koller、Christian Melander
DOI:10.1002/cmdc.201900560
日期:2020.1.17
disclosed that the known IKK-β inhibitor IMD-0354 potently suppresses colistin resistance in several Gram-negative strains. In this study, we explore the structure-activity relationship (SAR) between the IMD-0354 scaffold and colistin resistance suppression, and identify several compounds with more potent activity than the parent against highly colistin-resistant strains of Acinetobacter baumannii and Klebsiella