摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-hexahydro-pyrano[3,2-b]pyran-3-one | 192122-66-0

中文名称
——
中文别名
——
英文名称
(2S,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-hexahydro-pyrano[3,2-b]pyran-3-one
英文别名
(2S,4aR,8aR)-2-[2-[tert-butyl(diphenyl)silyl]oxyethyl]-4,4a,6,7,8,8a-hexahydropyrano[3,2-b]pyran-3-one
(2S,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-hexahydro-pyrano[3,2-b]pyran-3-one化学式
CAS
192122-66-0
化学式
C26H34O4Si
mdl
——
分子量
438.639
InChiKey
FYQHSZFFJWSAIS-ISJGIBHGSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.86
  • 重原子数:
    31
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    44.8
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    (2S,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-hexahydro-pyrano[3,2-b]pyran-3-one 在 lithium aluminium tetrahydride 作用下, 以 乙醚 为溶剂, 反应 0.08h, 以85%的产率得到(2S,3S,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-octahydro-pyrano[3,2-b]pyran-3-ol
    参考文献:
    名称:
    Stereocontrolled Synthesis of Cyclic Ethers by Intramolecular Hetero-Michael Addition. 5. Synthesis of All Diastereoisomers of 2,3,5,6-Tetrasubstituted Tetrahydropyrans
    摘要:
    A systematic approach to the enantiomeric synthesis of all possible diastereoisomers of 2,6-dialkyl-3,5-dioxytetrahydropyrans is described. The key step in the described methodology is the intramolecular cyclization of enantiomerically enriched (greater than or equal to 95% ee) 7-hydroxy-4-(benzoyloxy)-2,3-unsaturated esters. Infused systems, six of the eight diastereoisomers for one enantiomeric series were synthesized using this procedure as a key step. Using those with the suitable stereochemistry, the two left were synthesized by simple chemical transformations: in one case by the basic isomerization of the carbon with the (methoxycarbonyl)methyl substituent or by a Mitsunobu inversion of a secondary alcohol available from the benzoyloxy group,in the remaining one by a consecutive sequence of oxidation and reduction reactions again over the free secondary alcohol. The stereochemistry of the intramolecular hetero-Michael addition leading to 2,3-disubstituted tetrahydropyrans is highly predictable when kinetic conditions (low temperature and sodium or potassium bases) are used and can be rationalized by invoking a model of a chair-like transition state in which the benzoyloxy group is located in the equatorial mode and the stereochemical course of the approach of the alpha,beta-unsaturated ester is controlled by the geometry of the double bond. As a rule of thumb, the cyclization using E double bonds yielded cis-2,3-disubstituted tetrahydropyrans, while (Z)-unsaturated esters yielded the trans compounds. This empirical rule is followed in highly substituted systems, leading to fused 2,3,5,6-tetrasubstituted tetrahydropyrans, with the same absolute configuration in the carbon where the nucleophilic oxygen is located and the one where the benzoyloxy group is located. Those systems having opposite configurations yield the same trans-2,3-disubstituted compound. The isomerization under thermodynamic conditions (room or higher temperature with excess of base) of the diastereoisomers with the (methoxycarbonyl)methyl substituent in the axial mode led quantitatively to those in which such a group was located equatorially. The scope and limitations of the method are described in both the synthesis of the unsaturated precursor and the stereochemistry reached in the cyclization step.
    DOI:
    10.1021/jo9619241
  • 作为产物:
    描述:
    (2S,3R,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-octahydro-pyrano[3,2-b]pyran-3-olsodium acetatepyridinium chlorochromate 作用下, 以 二氯甲烷 为溶剂, 以90%的产率得到(2S,4aR,8aR)-2-[2-(tert-Butyl-diphenyl-silanyloxy)-ethyl]-hexahydro-pyrano[3,2-b]pyran-3-one
    参考文献:
    名称:
    Stereocontrolled Synthesis of Cyclic Ethers by Intramolecular Hetero-Michael Addition. 5. Synthesis of All Diastereoisomers of 2,3,5,6-Tetrasubstituted Tetrahydropyrans
    摘要:
    A systematic approach to the enantiomeric synthesis of all possible diastereoisomers of 2,6-dialkyl-3,5-dioxytetrahydropyrans is described. The key step in the described methodology is the intramolecular cyclization of enantiomerically enriched (greater than or equal to 95% ee) 7-hydroxy-4-(benzoyloxy)-2,3-unsaturated esters. Infused systems, six of the eight diastereoisomers for one enantiomeric series were synthesized using this procedure as a key step. Using those with the suitable stereochemistry, the two left were synthesized by simple chemical transformations: in one case by the basic isomerization of the carbon with the (methoxycarbonyl)methyl substituent or by a Mitsunobu inversion of a secondary alcohol available from the benzoyloxy group,in the remaining one by a consecutive sequence of oxidation and reduction reactions again over the free secondary alcohol. The stereochemistry of the intramolecular hetero-Michael addition leading to 2,3-disubstituted tetrahydropyrans is highly predictable when kinetic conditions (low temperature and sodium or potassium bases) are used and can be rationalized by invoking a model of a chair-like transition state in which the benzoyloxy group is located in the equatorial mode and the stereochemical course of the approach of the alpha,beta-unsaturated ester is controlled by the geometry of the double bond. As a rule of thumb, the cyclization using E double bonds yielded cis-2,3-disubstituted tetrahydropyrans, while (Z)-unsaturated esters yielded the trans compounds. This empirical rule is followed in highly substituted systems, leading to fused 2,3,5,6-tetrasubstituted tetrahydropyrans, with the same absolute configuration in the carbon where the nucleophilic oxygen is located and the one where the benzoyloxy group is located. Those systems having opposite configurations yield the same trans-2,3-disubstituted compound. The isomerization under thermodynamic conditions (room or higher temperature with excess of base) of the diastereoisomers with the (methoxycarbonyl)methyl substituent in the axial mode led quantitatively to those in which such a group was located equatorially. The scope and limitations of the method are described in both the synthesis of the unsaturated precursor and the stereochemistry reached in the cyclization step.
    DOI:
    10.1021/jo9619241
点击查看最新优质反应信息

同类化合物

(双(2,2,2-三氯乙基)) (2-氧杂双环[4.1.0]庚烷-7-羧酸乙酯 高壮观霉素 香芹酮氧化物 雷公藤甲素 雷公藤内酯酮 雷公藤内酯三醇 雷公藤乙素 钴啉醇酰胺,Co-(氰基-kC)-,磷酸(酯),内盐,3'-酯和(5,6-二甲基-1-a-D-呋喃核糖基-1H-苯并咪唑-2-胺-2-14C-kN3)(9CI)二氢 钠甲醛2-羟基苯磺酸酯4-(4-羟基苯基)磺酰苯酚 醛固酮21-乙酸酯 醛固酮18,21-二乙酸酯 醋酸泼尼松龙环氧 醋酸氟轻松杂质 螺[1,3-二氧戊环-2,2'-[7]氧杂双环[4.1.0]庚烷] 苯甲酸,4-[3-(三氟甲基)-3H-重氮基丙因-3-基]-,2,5-二羰基-1-吡咯烷基酯 芳香松香 芍药苷代谢素 I 索迪叮 盐(9CI)二氢4H-吡咯并[3,2-d]嘧啶-4-酮,7-[(2S,3S,4R,5R)-3,4-二羟基-5-[(磷羧基氧代)甲基]-2-吡咯烷基]-1,5--,二铵 甲基[(1R,2S,4R,6S)-4-羟基-1-甲基-7-氧杂双环[4.1.0]庚-2-基]乙酸酯 甲基(1S,2S,5R)-1-乙氧基-2-甲基-3-氧杂双环[3.2.0]庚烷-2-羧酸酯 环龙胆四糖全乙酸酯 环氧环己基环四硅氧烷 环氧己烷 泼尼松龙环氧 氧杂环庚-4-酮 氧化环己烯 氧化异佛尔酮 氟米龙杂质 柠檬烯-1 2-环氧化物 景天庚酮糖 明奈德 戊哌醇 强心-4,16,20(22)-三烯交酯,7,8-环氧-11,14-二羟基-12-羰基-2,3-[[(2S,3S,4S,6R)-四氢-3-羟基-4-甲氧基-6-甲基-2H-吡喃-3,2-二基]二(氧代)]-,(2a,3b,7b,11a)-(9CI) 布地奈德杂质15 己二酸,二(4-甲基-7-氧杂二环[4.1.0]庚-3-基)酯 娄地青霉 多纹素 外-顺-7-氧杂二环<2.2.1>庚-5-烯-2,3-二甲醇碳酸酯 吡啶,1,2-二氢-4,5,6-三甲基-2-亚甲基-(9CI) 吡咯烷,1-(2-哌嗪基羰基)-(9CI) 台湾牛奶菜双氧甾甙 B 反式-1,2-环氧-4-叔丁基环己烷 反式-1,2-环氧-4-叔丁基环己烷 双((3,4-环氧环己基)甲基)己二酸酯 去环氧-脱氧雪腐镰刀菌烯醇 卡烯内酯甙 半短裸藻毒素B 十二氟-1,2-环氧环庚烷