摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,2-bis-(4'-methoxyphenyl)-pentane-1,3-dione | 612824-72-3

中文名称
——
中文别名
——
英文名称
1,2-bis-(4'-methoxyphenyl)-pentane-1,3-dione
英文别名
1,2-Bis(4-methoxyphenyl)pentane-1,3-dione
1,2-bis-(4'-methoxyphenyl)-pentane-1,3-dione化学式
CAS
612824-72-3
化学式
C19H20O4
mdl
——
分子量
312.365
InChiKey
PTSSPVWCUAWZOS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.6
  • 重原子数:
    23
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.26
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    1,2-bis-(4'-methoxyphenyl)-pentane-1,3-dione三氟二甲基硫醚络合物air 、 ammonium acetate 、 溶剂黄146 作用下, 以 二氯甲烷二甲基亚砜 为溶剂, 生成 4-[4-Ethyl-2,6-bis(4-hydroxyphenyl)pyrimidin-5-yl]phenol
    参考文献:
    名称:
    Estrogenic diazenes: heterocyclic non-steroidal estrogens of unusual structure with selectivity for estrogen receptor subtypes
    摘要:
    Estrogens regulate many biological functions, often acting in a tissue-selective manner. Their tissue-selective action is believed to involve differential estrogen action through the two estrogen receptor (ER) subtypes, ERalpha and ERbeta, as well as differential interaction of the ligand-receptor complexes with promoters and coregulator proteins. In the latter case, selectivity is based on the induction of specific conformations of the ligand-ER complex, conformations that are influenced by the structure of the ligand. Estrogen pharmaceuticals having an ideal balance of tissue-selective activity are being sought for menopausal hormone replacement, breast cancer prevention and therapy, and other actions. To expand on the structural diversity of ER ligands that might show such tissue selectivity, we have prepared a series of diazenes (pyrazines, pyrimidines, and pyridazines) substituted with two to four aryl groups and various short-chain aliphatic substituents. All of the pyrazine and pyrimidines bind to ER, some with high affinity and with a considerable degree of preferential binding to either ERalpha or ERbeta. One pyrimidine and one pyrazine have ERalpha affinity preferences as high as 23 and 9, respectively, and one pyrimidine has an ERP affinity preference of 8. The pyridazines, by contrast, are quite polar and have only very low binding affinity for the ER. In cell-based transcription assays, several of the pyrimidines and a pyrazine were found to be considerably more agonistic on ERalpha than on ERbeta. Because these triaryl diazenes have the largest volumes among the ER ligands so far investigated, their high affinity demonstrates the flexibility of the ligand binding pocket of the ERs and its tolerance for large substituents. Thus, these novel heterocyclic ligands expand the repertoire of chemical structures that bind to the estrogen receptor, and they could prove to be useful in elucidating the biological behavior of the two ER subtypes and in forming the basis for new estrogen pharmaceuticals having desirable tissue selectivity. (C) 2002 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0968-0896(02)00309-7
  • 作为产物:
    参考文献:
    名称:
    Estrogenic diazenes: heterocyclic non-steroidal estrogens of unusual structure with selectivity for estrogen receptor subtypes
    摘要:
    Estrogens regulate many biological functions, often acting in a tissue-selective manner. Their tissue-selective action is believed to involve differential estrogen action through the two estrogen receptor (ER) subtypes, ERalpha and ERbeta, as well as differential interaction of the ligand-receptor complexes with promoters and coregulator proteins. In the latter case, selectivity is based on the induction of specific conformations of the ligand-ER complex, conformations that are influenced by the structure of the ligand. Estrogen pharmaceuticals having an ideal balance of tissue-selective activity are being sought for menopausal hormone replacement, breast cancer prevention and therapy, and other actions. To expand on the structural diversity of ER ligands that might show such tissue selectivity, we have prepared a series of diazenes (pyrazines, pyrimidines, and pyridazines) substituted with two to four aryl groups and various short-chain aliphatic substituents. All of the pyrazine and pyrimidines bind to ER, some with high affinity and with a considerable degree of preferential binding to either ERalpha or ERbeta. One pyrimidine and one pyrazine have ERalpha affinity preferences as high as 23 and 9, respectively, and one pyrimidine has an ERP affinity preference of 8. The pyridazines, by contrast, are quite polar and have only very low binding affinity for the ER. In cell-based transcription assays, several of the pyrimidines and a pyrazine were found to be considerably more agonistic on ERalpha than on ERbeta. Because these triaryl diazenes have the largest volumes among the ER ligands so far investigated, their high affinity demonstrates the flexibility of the ligand binding pocket of the ERs and its tolerance for large substituents. Thus, these novel heterocyclic ligands expand the repertoire of chemical structures that bind to the estrogen receptor, and they could prove to be useful in elucidating the biological behavior of the two ER subtypes and in forming the basis for new estrogen pharmaceuticals having desirable tissue selectivity. (C) 2002 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0968-0896(02)00309-7
点击查看最新优质反应信息

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S,5R,5''R)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (4R,5S)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 黄子囊素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-白藜芦醇3-O-beta-D-葡糖苷酸 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1-(3-甲基-2-萘基)-2-(2-萘基)乙烯 顺式-1,2-双(三甲基硅氧基)-1,2-双(4-溴苯基)环丙烷 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 非洲李(PRUNUSAFRICANA)树皮提取物 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀杂质7 阿托伐他汀杂质5 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 锌(II)(苯甲醛)(四苯基卟啉) 银松素 铜酸盐(5-),[m-[2-[2-[1-[4-[2-[4-[[4-[[4-[2-[4-[4-[2-[2-(羧基-kO)苯基]二氮烯基-kN1]-4,5-二氢-3-甲基-5-(羰基-kO)-1H-吡唑-1-基]-2-硫代苯基]乙烯基]-3-硫代苯基]氨基]-6-(苯基氨基)-1,3,5-三嗪-2-基]氨基]-2-硫代苯基]乙烯基]-3-硫代 铒(III) 离子载体 I 铀,二(二苯基甲酮)四碘- 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯