摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 250142-13-3

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
250142-13-3
化学式
C17H30Cl3NO4
mdl
——
分子量
418.788
InChiKey
YTBREMJLETUKOR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.85
  • 重原子数:
    25.0
  • 可旋转键数:
    13.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    75.63
  • 氢给体数:
    2.0
  • 氢受体数:
    3.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    A New Approach to the Stereospecific Synthesis of Phospholipids. The Use of l-Glyceric Acid for the Preparation of Diacylglycerols, Phosphatidylcholines, and Related Derivatives
    摘要:
    A new stereospecific synthesis of phospholipid derivatives of 1,2-diacyl-sn-glycerols is reported. The synthesis is based on (I) the use of L-glyceric acid as the stereocenter for construction of the optically active phospholipid molecule, (2) preparation of 3-triphenylmethyl-sn-glycerol as the key intermediate for sequential introduction of the primary and secondary acyl functions leading to the chiral diglycerides, and (3) elaboration of the sn-3-phosphodiester headgroup via phosphorylation using 2-chloro-2-oxo-1,3,2-dioxaphospholane, followed by ring opening of the five-membered phosphorus heterocycle with trimethylamine, ammonia, as well as oxygen and sulfur nucleophiles. The sequence has been shown to be suitable for the preparation of both symmetric and mixed-chain diacylglycerols with saturated and unsaturated acyl substituents. Phospholipid headgroups including phosphocholine, phosphoethanolamine, phosphoethanol, and phosphoethylthioacetate functions have been prepared. Application of the method to the synthesis of functionalized phosphatidylcholines has also been demonstrated by incorporating spectroscopically active spin-labeled and fluorescent reporter groups via postsynthetic derivatization of chain terminal w-aminoalkyl functions of the acyl substituents of the compounds. The synthetic methods developed have a great deal of flexibility, providing convenient routes to a wide range of structurally variable phospholipids for physicochemical, enzymological, and cell-biological studies.
    DOI:
    10.1021/jo990414e
  • 作为产物:
    描述:
    2,2,2-三氯-1,1-二甲基乙基氯甲酸酯12-氨基十二酸sodium hydroxide 作用下, 以 1,4-二氧六环 为溶剂, 反应 0.17h, 以88.7%的产率得到
    参考文献:
    名称:
    A New Approach to the Stereospecific Synthesis of Phospholipids. The Use of l-Glyceric Acid for the Preparation of Diacylglycerols, Phosphatidylcholines, and Related Derivatives
    摘要:
    A new stereospecific synthesis of phospholipid derivatives of 1,2-diacyl-sn-glycerols is reported. The synthesis is based on (I) the use of L-glyceric acid as the stereocenter for construction of the optically active phospholipid molecule, (2) preparation of 3-triphenylmethyl-sn-glycerol as the key intermediate for sequential introduction of the primary and secondary acyl functions leading to the chiral diglycerides, and (3) elaboration of the sn-3-phosphodiester headgroup via phosphorylation using 2-chloro-2-oxo-1,3,2-dioxaphospholane, followed by ring opening of the five-membered phosphorus heterocycle with trimethylamine, ammonia, as well as oxygen and sulfur nucleophiles. The sequence has been shown to be suitable for the preparation of both symmetric and mixed-chain diacylglycerols with saturated and unsaturated acyl substituents. Phospholipid headgroups including phosphocholine, phosphoethanolamine, phosphoethanol, and phosphoethylthioacetate functions have been prepared. Application of the method to the synthesis of functionalized phosphatidylcholines has also been demonstrated by incorporating spectroscopically active spin-labeled and fluorescent reporter groups via postsynthetic derivatization of chain terminal w-aminoalkyl functions of the acyl substituents of the compounds. The synthetic methods developed have a great deal of flexibility, providing convenient routes to a wide range of structurally variable phospholipids for physicochemical, enzymological, and cell-biological studies.
    DOI:
    10.1021/jo990414e
点击查看最新优质反应信息