Synthesis and biological evaluation of loxoprofen derivatives
摘要:
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-{4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID. (C) 2011 Elsevier Ltd. All rights reserved.
Properties and Synthesis of 2-{2-Fluoro (or Bromo)-4-[(2-oxocyclopentyl)methyl]phenyl}propanoic Acid: Nonsteroidal Anti-inflammatory Drugs with Low Membrane Permeabilizing and Gastric Lesion-Producing Activities
摘要:
We previously proposed that membrane permeabilization activity of NSAIDs is involved in NSAID-induced gastric lesions. We here synthesized derivatives of loxoprofen that have lower membrane permeabilization activity than other NSAIDs. Compared to loxoprofen, the derivatives 10a and 10b have lower membrane permeabilization activity and their oral administration produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 10a and 10b are likely to be therapeutically beneficial as safer NSAIDs.
LOXOPROFEN DERIVATIVE AND PHARMACEUTICAL PREPARATION CONTAINING THE SAME
申请人:Mizushima Toru
公开号:US20120016158A1
公开(公告)日:2012-01-19
There is provided a novel loxoprofen derivative that has no side effect such as a gastrointestinal disorder and also has excellent anti-inflammatory and analgesic effects and is represented by the following formula (I) or (II):
(wherein R
1
and R
2
each represent a halogen atom or a substituted or unsubstituted phenyl group)
or a pharmacologically acceptable salt thereof. In the derivative, the halogen atom is selected from a chlorine atom, a bromine atom, a fluorine atom, and an iodine atom, and a substituent of the substituted phenyl group is a halogen atom, a hydroxyl group, a substituted or unsubstituted lower alkyl group, a lower alkylthio group, a lower alkoxy group, a nitro group, an amino group, or a carboxyl group.
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID. (C) 2011 Elsevier Ltd. All rights reserved.
Properties and Synthesis of 2-{2-Fluoro (or Bromo)-4-[(2-oxocyclopentyl)methyl]phenyl}propanoic Acid: Nonsteroidal Anti-inflammatory Drugs with Low Membrane Permeabilizing and Gastric Lesion-Producing Activities
We previously proposed that membrane permeabilization activity of NSAIDs is involved in NSAID-induced gastric lesions. We here synthesized derivatives of loxoprofen that have lower membrane permeabilization activity than other NSAIDs. Compared to loxoprofen, the derivatives 10a and 10b have lower membrane permeabilization activity and their oral administration produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 10a and 10b are likely to be therapeutically beneficial as safer NSAIDs.