摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E)-3-(3,4,5-trimethoxyphenyl)-2-(3,4-dimethoxyphenyl)acrylic acid | 1228170-25-9

中文名称
——
中文别名
——
英文名称
(E)-3-(3,4,5-trimethoxyphenyl)-2-(3,4-dimethoxyphenyl)acrylic acid
英文别名
(E)-2-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)acrylic acid
(E)-3-(3,4,5-trimethoxyphenyl)-2-(3,4-dimethoxyphenyl)acrylic acid化学式
CAS
1228170-25-9
化学式
C20H22O7
mdl
——
分子量
374.39
InChiKey
JFQGGVFZDUIVFJ-RIYZIHGNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.35
  • 重原子数:
    27.0
  • 可旋转键数:
    8.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    83.45
  • 氢给体数:
    1.0
  • 氢受体数:
    6.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (E)-3-(3,4,5-trimethoxyphenyl)-2-(3,4-dimethoxyphenyl)acrylic acid溶剂黄146三乙胺 作用下, 以 四氢呋喃甲醇 为溶剂, 反应 7.0h, 生成 (E)-2-(3,4-dimethoxyphenyl)-N'-((Z)-2-oxoindolin-3-ylidene)-3-(3,4,5-trimethoxyphenyl)acrylohydrazide
    参考文献:
    名称:
    开发作为抗有丝分裂剂的酰肼腙-栓系的考布他汀-羟吲哚衍生物
    摘要:
    以( E )-双(苯基)丙烯酰肼和取代靛红为合成前体,通过缩合反应合成了一系列新的考布他汀-羟吲哚衍生物,通过酰肼腙连接。为了确定这些新衍生物的潜力,使用不同的癌细胞系评估了体外细胞毒活性,特别是肺癌、结直肠癌、乳腺癌和皮肤来源的癌细胞系。还对 HaCaT 细胞上最有效的化合物9o进行了可行性研究,表明其对非恶性细胞系无毒。细胞活力测定表明,在 A 环和N环上具有三甲氧基取代的衍生物9o靛红环上的 - 苄基取代对肺癌 (A549) 细胞系表现出有效的抗癌活性,IC 50值为 1.26±1.03 µM。此外,使用 DAPI、AO/EB 进行染色研究以确定核形态变化、DNA 损伤和细胞凋亡的诱导,膜联蛋白 V-FITC/PI 测定也证实了这一点,表明细胞生长抑制涉及细胞凋亡机制。此外,化合物9o对 ROS 产生的诱导作用表明 ROS 介导的不需要细胞的细胞死亡以及细胞凋亡的调节。从 G2/M 期细胞周期停滞和化合物9o
    DOI:
    10.1016/j.molstruc.2022.134675
  • 作为产物:
    参考文献:
    名称:
    过渡金属催化氧化锍和碘鎓叶立德与顺式芪酸环化合成α-吡喃酮和chromen-2-ones
    摘要:
    已经开发了一种过渡金属催化的卡宾插入策略来激活药用重要的顺式-芪酸的失活 sp 2 C-H 键。这种方法能够在顺式的烯烃键上轻松构建 α-pyrone 和 chromene-2-one 骨架-芪酸具有高原子经济性、良好的收率、广泛的官能团耐受性和克级合成可行性。该策略揭示了酸官能团作为导向基团以及作为卡宾前体的锍和高价碘叶立德的效率。探索了构建的结构的光物理特性,显示发射范围为 500 至 600 nm,并通过分子对接分析和百分比抑制研究检查了生物潜力。此外,还进行了 ESI-MS 研究以确定关键中间体,帮助勾勒出可能的机制。
    DOI:
    10.1039/d2nj03454a
点击查看最新优质反应信息

文献信息

  • Synthesis, Antibacterial and Pharmacokinetic Evaluation of Novel Derivatives of Harmine N9-Cinnamic Acid
    作者:Yan Liang、Dian He、Deshun Zhou、Junshuai Li、Lei Tang、Zhen Wang
    DOI:10.3390/molecules26164842
    日期:——

    A series of 16 new derivatives of harmine N9-Cinnamic acid were synthesized and fully characterized using NMR and MS. The in vitro antibacterial evaluation revealed that most of the synthesized harmine derivatives displayed better antibacterial activities against Gram-positive strains (S. aureus, S. albus and MRSA) than Gram-negative strains (E. coli and PA). In particular, compound 3c showed the strongest bactericidal activity with a minimum inhibitory concentration of 13.67 μg/mL. MTT assay showed that compound 3c displayed weaker cytotoxicity than harmine with IC50 of 340.30, 94.86 and 161.67 μmol/L against WI-38, MCF-7 and HepG2 cell lines, respectively. The pharmacokinetic study revealed that the distribution and elimination of 3c in vivo were rapid in rats with an oral bioavailability of 6.9%.

    一系列16个新的harmine N9-肉桂酸生物被合成并通过NMR和MS进行了全面表征。体外抗菌评价显示,大多数合成的harmine衍生物对革兰氏阳性菌株(黄色葡萄球菌、白色葡萄球菌和MRSA)的抗菌活性优于革兰氏阴性菌株(大肠杆菌和假单胞菌)。特别是,化合物3c显示出最强的杀菌活性,最小抑制浓度为13.67 μg/mL。MTT试验显示,化合物3c对WI-38、MCF-7和HepG2细胞系的细胞毒性较harmine更弱,IC50分别为340.30、94.86和161.67 μmol/L。药代动力学研究表明,3c在体内的分布和消除在大鼠中迅速,口服生物利用度为6.9%。
  • Synthesis, mitochondrial localization of fluorescent derivatives of cinnamamide as anticancer agents
    作者:Kun Yang、Yuanyuan Li、Qun Tang、Lifang Zheng、Dian He
    DOI:10.1016/j.ejmech.2019.03.001
    日期:2019.5
    Mitochondria are considered as a therapeutic target for new drug design toward all kinds of cancer. Hence in order to enhance the dosage in mitochondrial fraction of cinnamamides, the mitochondria targeted derivatives were designed by the incorporation of cinnamamides into a fluorophore carrier of coumarin-3-carboxamide with a 1:1 stoichiometry. Using the amide linkers, twenty-one compounds were synthesized and the cytotoxicity against a panel of cancer cells (MCF-7, Hela, HepG2, HL-60) was tested. In particular, compound 18c displayed the potent cytotoxicity toward HL-60 leukaemia cells, which could quickly and efficiently entry into HL-60 cells and specifically localize within mitochondria. And 18c preferred enrichment in HL-60 cells than in PBMC normal cells, accounting for the higher toxicity to cancer cells than to normal cells. Moreover, the dissipations of mitochondrial membrane potential and enhancement of cellular ROS level were also preceded upon 18c treatment, leading to cell cycle arrest and apoptosis/necrosis in HL-60 cells. Besides, acted as a Michael acceptor, 18c initiated a thia-Michael addition reaction toward cysteamine (1:2 stoichiometry), detecting by the UV-Vis spectrum and HRMS analysis. This could result in the blue emission of 18c in mitochondria after the procedure of cell fixation, owing to the formation of covalent bond with mitochondrial thiols. Our study reported 18c might be useful for the further development into a mitochondria-targeted anti-leukemia agent and the Michael acceptor might be a versatile functional group. (C) 2019 Elsevier Masson SAS. All rights reserved.
  • Pyrazolone-fused combretastatins and their precursors: synthesis, cytotoxicity, antitubulin activity and molecular modeling studies
    作者:Bojan Burja、Tamara Čimbora-Zovko、Sanja Tomić、Tihana Jelušić、Marijan Kočevar、Slovenko Polanc、Maja Osmak
    DOI:10.1016/j.bmc.2010.03.006
    日期:2010.4
    A series of pyrazolone-fused combretastatins and precursors were synthesized and their cytotoxicity as well as antitubulin potential was evaluated. The hydrazide 9f and the pyrazolone-fused combretastatins 12a, 12b and 12c were highly cytotoxic against various tumor cell lines including cisplatin resistant cells. The same compounds were also the best inhibitors of tubulin polymerization. Molecular modeling results showed that they bind the colchicine binding site at the tubulin heterodimer. The hydrazide 9f arrested HeLa cells in the G2/M phase of the cell cycle and strongly affected cell shape and microtubule network. (C) 2010 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S,5R,5''R)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (4R,5S)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 黄子囊素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-白藜芦醇3-O-beta-D-葡糖苷酸 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1-(3-甲基-2-萘基)-2-(2-萘基)乙烯 顺式-1,2-双(三甲基硅氧基)-1,2-双(4-溴苯基)环丙烷 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 非洲李(PRUNUSAFRICANA)树皮提取物 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀杂质7 阿托伐他汀杂质5 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 锌(II)(苯甲醛)(四苯基卟啉) 银松素 铜酸盐(5-),[m-[2-[2-[1-[4-[2-[4-[[4-[[4-[2-[4-[4-[2-[2-(羧基-kO)苯基]二氮烯基-kN1]-4,5-二氢-3-甲基-5-(羰基-kO)-1H-吡唑-1-基]-2-硫代苯基]乙烯基]-3-硫代苯基]氨基]-6-(苯基氨基)-1,3,5-三嗪-2-基]氨基]-2-硫代苯基]乙烯基]-3-硫代 铒(III) 离子载体 I 铀,二(二苯基甲酮)四碘- 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯