complex presented higher reactivity in the transferhydrogenation (TH) of ketones in 2-propanol. Experimentally, it was established that both the benzimidazole and amine N–H proton played a vital role in the enhancement of the catalytic activity. Utilizing this system a wide range of aldehydes and ketones were reduced efficiently. Notably, the TH of several imines, as well as chemoselective reduction of
Chiral phosphoric acid catalyzed transferhydrogenation of ketimines derived from propiophenone derivatives and reductive amination of alkyl ethyl ketone derivatives were extensively examined in the presence of two representative hydrogen donors. The excellent enantioselectivetransferhydrogenation was achieved by use of benzothiazoline as a hydrogen donor. The theoretical studies elucidated that
The influence of the alcohol, as the hydrogen donor, on the efficiency and selectivity of the asymmetrictransferhydrogenation (ATH) of imines is reported for the first time. This discovery not only leads to a highly enantioselective access to N‐aryl and N‐alkyl amines, but also provides new insight into the mechanism of the ATH of imines. Both experimental and computational studies provide support
When combined with a chiral phosphate counteranion, a chiral diamine-ligated Ir(III) catalyst displayed excellent enantioselectivities in the asymmetric hydrogenation of a wide range of acyclic imines, affording chiral amines in up to 99% ee.