摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,3-diisopropyl-1,4-naphthoquinone | 137395-55-2

中文名称
——
中文别名
——
英文名称
2,3-diisopropyl-1,4-naphthoquinone
英文别名
2,6-Di-isopropyl-1,4-naphthochinon;2,3-Diisopropylnaphthalene-1,4-dione;2,3-di(propan-2-yl)naphthalene-1,4-dione
2,3-diisopropyl-1,4-naphthoquinone化学式
CAS
137395-55-2
化学式
C16H18O2
mdl
——
分子量
242.318
InChiKey
NIWAAQZKZXDKPL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    356.7±42.0 °C(Predicted)
  • 密度:
    1.087±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.7
  • 重原子数:
    18
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.38
  • 拓扑面积:
    34.1
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    2,5-二甲基己-3-炔 、 alkaline earth salt of/the/ methylsulfuric acid 在 Ce(NH4)6(NO2)2 、 硝酸 作用下, 生成 2,3-diisopropyl-1,4-naphthoquinone
    参考文献:
    名称:
    Substrate regulation of product distribution in the reactions of arylchromium carbene complexes with alkynes
    摘要:
    The reactions of arylcarbene complexes with alkynes were examined for six of the nine possible substitution patterns for mono- and dioxygenated aryl substituents of the carbene carbon. The product distributions were found to be highly dependent on a number of factors, including solvent, temperature, concentration of alkyne, and the nature of the aryl substituent. The product distributions were determined in nearly all cases for phenol and indene products and in some cases for furans, cyclobutenones, and cyclopentenediones, which were minor products in these reactions. The product distribution for the reaction of each arylcarbene complex was determined as a function of both temperature and alkyne concentration, since the combined product distribution profiles provided a much more sensitive measure of the relative influences of the aryl substituents on the reaction outcome. Furthermore, this distribution profile was determined for the reactions with 3-hexyne and I-pentyne for each carbene complex. A series of monosubstituted arylcarbene complexes were examined to identify the effects of oxygen substituents at various positions on the aryl ring. The m-methoxy group has no effect on the product distribution, whereas the o-methoxy group influences the distribution by its ability to chelate to the metal center and the p-methoxy group influences the distribution by its ability to donate electrons by resonance. The product distributions from the reactions of the 2,3-, 2,4-, and 2,5-dimethoxy complexes followed the profile expected from the simple sum of the profiles of the monomethoxyl complexes. In all cases where an effect was observed, higher concentrations of alkyne led to a higher selectivity for phenol over indene products. The dependence of the product distribution on the concentration of the alkyne substrate is suggested to be due to a process in which a second molecule of alkyne coordinates to the metal center and determines the chemical outcome of an intermediate that has covalently incorporated the first alkyne. It is further suggested that the special ability of an alkyne to display this effect is related to the ability of an alkyne to readily switch from a 2 to a 4 e- donor. This phenomenon of substrate regulation of product distribution is termed the allochemical effect, and a mechanistic explanation is developed that features this proposed process and that is refined to accommodate the observed effects of solvent, temperature, chelation, and steric and electronic effects that have been observed for the reaction of carbene complexes and alkynes.
    DOI:
    10.1021/ja00024a040
点击查看最新优质反应信息

文献信息

  • Study of Radical Decarboxylation Toward Functionalization of Naphthoquinones
    作者:Claude Commandeur、Céline Chalumeau、Jean Dessolin、Michel Laguerre
    DOI:10.1002/ejoc.200700135
    日期:2007.6
    In order to obtain functionalized naphthoquinones, a systematic study of the Kochi–Anderson procedure for the alkylation of quinones is presented. While linear amino acids of different lengths were good substrates for this decarboxylation procedure, chiral α-amino acids were unsuccessful substrates. The best reaction conditions were evaluated with β-alanine and then applied to a series of carboxylic
    为了获得功能化的萘醌,提出了对醌烷基化的 Kochi-Anderson 程序的系统研究。虽然不同长度的线性氨基酸是这种脱羧过程的良好底物,但手性 α-氨基酸是不成功的底物。用β-丙氨酸评估最佳反应条件,然后将其应用于一系列羧酸以获得萘醌的化学多样性。我们观察到酸的取代对于烷基化是至关重要的,即使使用不同的反应物,也可以用 1,4-萘醌实现双烷基化。Barton 程序尝试在一些底物上与我们的结果进行比较,但无论使用哪种自由基陷阱,都没有观察到反应。(© Wiley-VCH Verlag GmbH & Co. KGaA,
  • Substrate regulation of product distribution in the reactions of arylchromium carbene complexes with alkynes
    作者:Mary Ellen Bos、William D. Wulff、Ross A. Miller、Steven Chamberlin、Timothy A. Brandvold
    DOI:10.1021/ja00024a040
    日期:1991.11
    The reactions of arylcarbene complexes with alkynes were examined for six of the nine possible substitution patterns for mono- and dioxygenated aryl substituents of the carbene carbon. The product distributions were found to be highly dependent on a number of factors, including solvent, temperature, concentration of alkyne, and the nature of the aryl substituent. The product distributions were determined in nearly all cases for phenol and indene products and in some cases for furans, cyclobutenones, and cyclopentenediones, which were minor products in these reactions. The product distribution for the reaction of each arylcarbene complex was determined as a function of both temperature and alkyne concentration, since the combined product distribution profiles provided a much more sensitive measure of the relative influences of the aryl substituents on the reaction outcome. Furthermore, this distribution profile was determined for the reactions with 3-hexyne and I-pentyne for each carbene complex. A series of monosubstituted arylcarbene complexes were examined to identify the effects of oxygen substituents at various positions on the aryl ring. The m-methoxy group has no effect on the product distribution, whereas the o-methoxy group influences the distribution by its ability to chelate to the metal center and the p-methoxy group influences the distribution by its ability to donate electrons by resonance. The product distributions from the reactions of the 2,3-, 2,4-, and 2,5-dimethoxy complexes followed the profile expected from the simple sum of the profiles of the monomethoxyl complexes. In all cases where an effect was observed, higher concentrations of alkyne led to a higher selectivity for phenol over indene products. The dependence of the product distribution on the concentration of the alkyne substrate is suggested to be due to a process in which a second molecule of alkyne coordinates to the metal center and determines the chemical outcome of an intermediate that has covalently incorporated the first alkyne. It is further suggested that the special ability of an alkyne to display this effect is related to the ability of an alkyne to readily switch from a 2 to a 4 e- donor. This phenomenon of substrate regulation of product distribution is termed the allochemical effect, and a mechanistic explanation is developed that features this proposed process and that is refined to accommodate the observed effects of solvent, temperature, chelation, and steric and electronic effects that have been observed for the reaction of carbene complexes and alkynes.
查看更多