Sulfonamides undergo metabolic alterations to varying extent in tissues, especially in liver. Both acetylation & oxidation occur. ... In nearly all species, major metabolic derivative is N4-acetylated sulfonamide. /Sulfonamides/
Although the liver is the major site of metabolism, sulfonamides may also be metabolized in other body tissues. Most sulfonamides are metabolized mainly by N4-acetylation. The degree of acetylation, which is a function of time, varies from less than 5% for sulfamethizole to up to 40% for sulfadiazine. The N4-acetyl metabolites, which do not possess antibacterial activity, have greater affinity for plasma albumin than does the nonacetylated drug and are usually less soluble than the parent sulfonamide, particularly in acidic urine. Like acetyl derivatives, glucuronide derivatives do not possess antibacterial activity; however, glucuronide derivatives are water soluble, appear to resemble the nonacetylated sulfonamide in plasma binding capacity, and have not been associated with adverse effects. /Sulfonamides/
These medications /coumarin- or indandione-derivative anticoagulants; hydantoin anticonvulsants or oral antidiabetic agents/ may be displaced from protein binding sites and/or their metabolism may be inhibited by some sulfonamides, resulting in increased or prolonged effects and/or toxicity; dosage adjustments may be necessary during and after sulfonamide therapy. /Sulfonamides/
Concurrent use of bone marrow depressants with sulfonamides may increase the leukopenic and/or thrombocytopenic effects; if concurrent use is required, close observation for myelotoxic effects should be considered. /Sulfonamides/
Concurrent long-term use of sulfonamides /with estrogen-containing, oral contraceptives/ may result in increased incidence of breakthrough bleeding and pregnancy. /Sulfonamides/
Concurrent use /of cyclosporine/ with sulfonamides may increase the metabolism of cyclosporine, resulting in decreased plasma concentration and potential transplant rejection, and additive nephrotoxicity; plasma cyclosporine concentrations and renal function should be monitored. /Sulfonamides/
Maintain an open airway and assist ventilation if necessary. Treat coma, seizures, hypotension, anaphylaxis, and hemolysis if they occur. Replace fluid losses resulting from gastroenteritis with intravenous crystalloids. Maintain steady urine flow with fluids to alleviate crystalluria ... Administer activated charcoal orally if conditions are appropriate. Gastric lavage is not necessary after small to moderate ingestions if activated charcoal can be given promptly. Most antibiotics are excreted unchanged in the urine, so maintenance of adequate urine flow is important. The role of forced diuresis is unclear. Hemodialysis is not usually indicated, except perhaps in patients with renal dysfunction and a high level of a toxic agent. /Antibacterial agents/
Sulfacytine...is rapidly absorded following oral administration. More than 90% is excreted by kidneys almost entirely in the free, active form. ...86% is bound to serum proteins. ...The drug crosses the placenta & is excreted in milk...
By comparison to sulfisoxazole urine levels, 1 g/day of sulfacytine appears to be appropriate therapeutic dose & produces urine concn at least 10 times highest min inhibitory concentration found for sensitive microorganisms.
Thirty-four subjects were divided into 3 groups of 12, 12, and 10 respectively. The first group received 250 mg /sulfacytine/ 4 times a day, the second, 500 mg 4 times a day, and the third group received placebo. The renal function was not altered during the 84 days of the trial. Creatinine clearance, urea nitrogen, urinalysis, and phenosulfophthalein excretion tests were performed to evaluate kidney function.
Kappa agonist compounds and pharmaceutical formulations thereof
申请人:——
公开号:US20030144272A1
公开(公告)日:2003-07-31
Compounds having kappa opioid agonist activity, compositions containing them and method of using them as analgesics are provided.
The compounds of formulae I, II, IIA, III, IIIA, IIIB, IIIB-i, IV and IVA have the structure:
1
2
wherein
R
1
, R
2
, R
3
, R
4
; and
X, X
4
, X
5
, X
7
, X
9
;
Y, Z and n are as described in the specification.
[EN] COMPOUNDS (CYSTEIN BASED LIPOPEPTIDES) AND COMPOSITIONS AS TLR2 AGONISTS USED FOR TREATING INFECTIONS, INFLAMMATIONS, RESPIRATORY DISEASES ETC.<br/>[FR] COMPOSÉS (LIPOPEPTIDES À BASE DE CYSTÉINE) ET COMPOSITIONS EN TANT QU'AGONISTES DES TLR2 UTILISÉS POUR TRAITER DES INFECTIONS, INFLAMMATIONS, MALADIES RESPIRATOIRES ENTRE AUTRES
申请人:IRM LLC
公开号:WO2011119759A1
公开(公告)日:2011-09-29
The invention provides a novel class of compounds viz. generally lipopeptides like Pam3CSK4, immunogenic compositions and pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with Toll-Like Receptors 2. In one aspect, the compounds are useful as adjuvants for enhancing the effectiveness a vaccine.
[EN] BIOREVERSABLE PROMOIETIES FOR NITROGEN-CONTAINING AND HYDROXYL-CONTAINING DRUGS<br/>[FR] PRO-FRAGMENTS BIORÉVERSIBLES POUR MÉDICAMENTS CONTENANT DE L'AZOTE ET DE L'HYDROXYLE
申请人:BAIKANG SUZHOU CO LTD
公开号:WO2015081891A1
公开(公告)日:2015-06-11
Disclosed are promoieties of the following formula which can be used to form prodrugs of nitrogen-containing or hydroxyl-containing drug or a pharmaceutically active agent: (I) and pharmaceutical compositions comprising the prodrugs.
Carboxamide and amino derivatives and methods of their use
申请人:Dolle E. Roland
公开号:US20050113294A1
公开(公告)日:2005-05-26
Carboxamide and amino derivatives, pharmaceutical compositions containing these compounds, and methods for their pharmaceutical use are disclosed. In certain embodiments, the carboxamide derivatives are ligands of the δ opioid receptor and are useful, inter alia, for treating and/or preventing pain, anxiety, gastrointestinal disorders, and other δ opioid receptor-mediated conditions.
FUNCTIONALLY-MODIFIED OLIGONUCLEOTIDES AND SUBUNITS THEREOF
申请人:Sarepta Therapeutics, Inc.
公开号:US20140330006A1
公开(公告)日:2014-11-06
Functionally-modified oligonucleotide analogues comprising modified intersubunit linkages and/or modified 3′ and/or 5′-end groups are provided. The disclosed compounds are useful for the treatment of diseases where inhibition of protein expression or correction of aberrant mRNA splice products produces beneficial therapeutic effects.