Pd(II) complexes in which 2-pyridyldiphenylphosphine (Ph2Ppy) chelates the Pd(II) centre have been prepared and characterized by multinuclear NMR spectroscopy and by X-ray crystallographic analysis. trans-[Pd(κ1-Ph2Ppy)2Cl2] is transformed into [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl]Cl by the addition of a few drops of methanol to dichloromethane solutions, and into [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl]X by addition of AgX or TlX, (X = BF4−, CF3SO3− or MeSO3−). [Pd(κ1-Ph2Ppy)2(p-benzoquinone)] can be transformed into [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)(MeSO3)][MeSO3] by the addition of two equivalents of MeSO3H. Addition of further MeSO3H affords [Pd(κ2-Ph2Ppy)(κ1-Ph2PpyH)(MeSO3)][MeSO3]2. Addition of two equivalents of CF3SO3H, MeSO3H or CF3CO2H and two equivalents of Ph2Ppy to [Pd(OAc)2] in CH2Cl2 or CH2Cl2–MeOH affords [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)X]X, (X = CF3SO3−, MeSO3− or CF3CO2−), however addition of two equivalents of HBF4·Et2O affords a different complex, tentatively formulated as [Pd(κ2-Ph2Ppy)2]X2. Addition of excess acid results in the clean formation of [Pd(κ2-Ph2Ppy)(κ1-Ph2PpyH)(X)]X2. In methanol, addition of MeSO3H and three equivalents of Ph2Ppy to [Pd(OAc)2] affords [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)2][MeSO3]2 as the principal Pd-phosphine complex. The fluxional processes occuring in these complexes and in [Pd (κ1-Ph2Ppy)3Cl]X, (X = Cl, OTf) and the potential for hemilability of the Ph2Ppy ligand has been investigated by variable-temperature NMR. The activation entropy and enthalpy for the regiospecific fluxional processes occuring in [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)2][MeSO3]2 have been determined and are in the range −10 to −30 J mol−1 K−1 and ca. 30 kJ mol−1 respectively, consistent with associative pathways being followed. The observed regioselectivities of the exchanges are attributed to the constraints imposed by microscopic reversibility and the small bite angle of the Ph2Ppy ligand. X-Ray crystal structure determinations of trans-[Pd(κ1-Ph2Ppy)2Cl2], [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl][BF4], [Pd(κ1-Ph2Ppy)2(p-benzoquinone)], trans-[Pd(κ1-Ph2PpyH)2Cl2][MeSO3]2, and [Pd(κ1-Ph2Ppy)3Cl](Cl) are reported. In [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl][BF4] a donor–acceptor interaction is seen between the pyridyl-N of the monodentate Ph2Ppy ligand and the phosphorus of the chelating Ph2Ppy resulting in a trigonal bipyramidal geometry at this phosphorus.
制备了 2-
吡啶二苯基膦 (Ph2Ppy) 螯合 Pd(II) 中心的 Pd(II) 配合物,并通过多核 NMR 光谱和 X 射线晶体分析对其进行了表征。通过向
二氯甲烷溶液中添加几滴
甲醇,反式-[Pd(κ1-Ph2Ppy)2Cl2]转化为[Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl]Cl,并转化为[Pd(κ2-Ph2Ppy) )(κ1-Ph2Ppy)Cl]X 通过添加 AgX 或 TlX,(X =
BF4−、CF3SO3− 或 MeSO3−)。通过添加两当量的 MeSO3H,[Pd(κ1-Ph2Ppy)2(
对苯醌)]可以转化为 [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)(MeSO3)][MeSO3]。进一步添加 MeSO3H 得到 [Pd(κ2-Ph2Ppy)(κ1-Ph2PpyH)(MeSO3)][MeSO3]2。将两当量的 CF3SO3H、MeSO3H 或 CF3CO2H 和两当量的 Ph2Ppy 添加到
CH2Cl2 或 –MeOH 中的 [Pd(OAc)2] 中,得到 [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)X]X,(X = CF3SO3 -、MeSO3- 或 CF3CO2-),但是添加两当量的 H ·Et2O 会得到不同的复合物,暂定为 [Pd(κ2-Ph2Ppy)2]X2。添加过量的酸导致 [Pd(κ2-Ph2Ppy)(κ1-Ph2PpyH)(X)]X2 的干净形成。在
甲醇中,将 MeSO3H 和三当量的 Ph2Ppy 添加到 [Pd(OAc)2] 中,得到 [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)2][MeSO3]2 作为主要的 Pd-膦络合物。这些配合物和 [Pd (κ1-Ph2Ppy)3Cl]X (X = Cl, OTf) 中发生的通量过程以及 Ph2Ppy
配体的半稳定性的潜力已通过变温 NMR 进行了研究。 [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)2][MeSO3]2 中发生的区域特异性通量过程的活化熵和焓已确定,范围为 -10 至 -30 J mol−1 K−1和约。分别为 30 kJ mol−1,与所遵循的关联路径一致。观察到的交换区域选择性归因于微观可逆性和 Ph2Ppy
配体的小咬角所施加的限制。反式-[Pd(κ1-Ph2Ppy)2Cl2]、[Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl][ ]、[Pd(κ1-Ph2Ppy)2(
对苯醌)的X射线晶体结构测定]、反式-[Pd(κ1-Ph2PpyH)2Cl2][MeSO3]2 和 [Pd(κ1-Ph2Ppy)3Cl](Cl) 已报道。在 [Pd(κ2-Ph2Ppy)(κ1-Ph2Ppy)Cl][ ] 中,单齿 Ph2Ppy
配体的
吡啶基-N 和螯合 Ph2Ppy 的
磷之间存在供体-受体相互作用,从而形成三角双锥几何形状。
磷。