摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

iso-tetragermane | 14097-09-7

中文名称
——
中文别名
——
英文名称
iso-tetragermane
英文别名
i-Ge4H10
iso-tetragermane化学式
CAS
14097-09-7
化学式
Ge4H10
mdl
——
分子量
300.439
InChiKey
MNCIIKMELREZQR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.2
  • 重原子数:
    4.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

SDS

SDS:5921e53f27e54e6513b5828bee9deb82
查看

反应信息

  • 作为反应物:
    描述:
    tin tetradeuteride正四硅烷iso-tetragermaneisotetrasilane锗烷氢气 作用下, 以 neat (no solvent) 为溶剂, 300.0 ℃ 、0.01 Pa 条件下, 生成
    参考文献:
    名称:
    Molecular Synthesis of High-Performance Near-IR Photodetectors with Independently Tunable Structural and Optical Properties Based on Si–Ge–Sn
    摘要:
    This Article describes the development of an optimized chemistry-based synthesis method, supported by a purpose-built reactor technology, to produce the next generation of Ge1-X-ySixSny materials on conventional Si(100) and Ge(100) platforms at gas-source molecular epitaxy conditions. Technologically relevant alloy compositions (1-5% Sn, 4-20% Si) are grown at ultralow temperatures (330-290 degrees C) using highly reactive tetragermane (Ge4H10), tetrasilane (Si4H10), and stannane (SnD4) hydride precursors, allowing the simultaneous increase of Si and Sn content (at a fixed Si/Sn ratio near 4) for the purpose of tuning the bandgap while maintaining lattice-matching to Ge. First principles thermochemistry studies were used to explain stability and reactivity differences between the Si/Ge hydride sources in terms of a complex interplay among the isomeric species, and provide guidance for optimizing process conditions. Collectively, this approach leads to unprecedented control over the substitutional incorporation of Sn into Si Ge and yields materials with superior quality suitable for transitioning to the device arena. We demonstrate that both intrinsic and doped Ge1-x-ySixSny layers can now be routinely produced with defect-free microstructure and viable thickness, allowing the fabrication of high-performance photodetectors on Ge(100). Highlights of these new devices include precisely adjustable absorption edges between 0.87 and 1.03 eV, low ideality factors close to unity, and state-of-the-art dark current densities for Ge-based materials. Our unequivocal realization of the "molecules to device" concept implies that GeSiSn alloys represent technologically viable semiconductors that now merit inclusion in the class of ubiquitous Si, Ge, and SiGe group IV systems.
    DOI:
    10.1021/ja309894c
  • 作为产物:
    描述:
    二锗烷 以 neat (no solvent) 为溶剂, 生成 iso-tetragermane 、 germane
    参考文献:
    名称:
    Molecular Synthesis of High-Performance Near-IR Photodetectors with Independently Tunable Structural and Optical Properties Based on Si–Ge–Sn
    摘要:
    This Article describes the development of an optimized chemistry-based synthesis method, supported by a purpose-built reactor technology, to produce the next generation of Ge1-X-ySixSny materials on conventional Si(100) and Ge(100) platforms at gas-source molecular epitaxy conditions. Technologically relevant alloy compositions (1-5% Sn, 4-20% Si) are grown at ultralow temperatures (330-290 degrees C) using highly reactive tetragermane (Ge4H10), tetrasilane (Si4H10), and stannane (SnD4) hydride precursors, allowing the simultaneous increase of Si and Sn content (at a fixed Si/Sn ratio near 4) for the purpose of tuning the bandgap while maintaining lattice-matching to Ge. First principles thermochemistry studies were used to explain stability and reactivity differences between the Si/Ge hydride sources in terms of a complex interplay among the isomeric species, and provide guidance for optimizing process conditions. Collectively, this approach leads to unprecedented control over the substitutional incorporation of Sn into Si Ge and yields materials with superior quality suitable for transitioning to the device arena. We demonstrate that both intrinsic and doped Ge1-x-ySixSny layers can now be routinely produced with defect-free microstructure and viable thickness, allowing the fabrication of high-performance photodetectors on Ge(100). Highlights of these new devices include precisely adjustable absorption edges between 0.87 and 1.03 eV, low ideality factors close to unity, and state-of-the-art dark current densities for Ge-based materials. Our unequivocal realization of the "molecules to device" concept implies that GeSiSn alloys represent technologically viable semiconductors that now merit inclusion in the class of ubiquitous Si, Ge, and SiGe group IV systems.
    DOI:
    10.1021/ja309894c
点击查看最新优质反应信息

文献信息

  • Electric discharge reactions of silane and germane with some volatile group VI species
    作者:J. E. Drake、C. Riddle
    DOI:10.1039/j19700003134
    日期:——
    discharge on equimolar mixtures of the following hydrides: SiH4/H2S, SiH4/H2Se, GeH4/H2S, GeH4/H2Se, SiH4/GeH4/H2S, SiH4/GeH4/H2Se, SiH4/MeSH, and GeH4/MeSH, has been investigated. Analysis of the reaction products by 1H n.m.r. and mass spectroscopy indicates the formation of the previously known mixed and ternary hydrides: SiH3SH, (SiH3)2S, SiH3SeH, (SiH3)2Se, GeH3SH, (GeH3)2S, GeH3SeH, (GeH3)2Se,
    无声放电对以下氢化物的等摩尔混合物的作用:SiH 4 / H 2 S,SiH 4 / H 2 Se,GeH 4 / H 2 S,GeH 4 / H 2 Se,SiH 4 / GeH 4 / H已经研究了2 S,SiH 4 / GeH 4 / H 2 Se,SiH 4 / MeSH和GeH 4 / MeSH。通过1 H核磁共振和质谱分析反应产物表明形成了先前已知的混合和三元氢化物:SiH 3 SH,(SiH3) 2 S,SiH 3 SeH,(SiH 3) 2 Se,GeH 3 SH,(GeH 3) 2 S,GeH 3 SeH,(GeH 3) 2 Se,MeSSiH 3和MeSGeH 3。新化合物SiH 3 SGeH 3和SiH 3 SeGeH 3从三元混合物的放电中获得。
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: S: SVol.4a/b, 1.3.10.2.1, page 269 - 269
    作者:
    DOI:——
    日期:——
查看更多

同类化合物

(S)-4-氯-1,2-环氧丁烷 顺式-环氧琥珀酸氢钾 顺式-1-环己基-2-乙烯基环氧乙烷 顺-(2S,3S)甲基环氧肉桂酸酯 雌舞毒蛾引诱剂 阿洛司他丁 辛基缩水甘油醚 试剂(3S,6S)-(-)-3,6-Diisopropyl-1,4-dioxane-2,5-dione 表氰醇 螺[环氧乙烷-2,2-三环[3.3.1.1~3,7~]癸烷] 蛇根混合碱 benzene oxide 聚碳酸丙烯酯 聚依他丁 羟基乙醛 缩水甘油基异丁基醚 缩水甘油基十六烷基醚 缩水甘油 硬脂基醇聚氧乙烯聚氧丙烯醚 硅烷,三甲基[(3-甲基噁丙环基)乙炔基]-,顺- 盐酸司维拉姆 甲醛与(氯甲基)环氧乙烷,4,4-(1-甲基乙亚基)双酚和2-甲基苯酚的聚合物 甲醛与(氯甲基)环氧乙烷,4,4'-(1-甲基乙亚基)二[苯酚]和4-(1,1,3,3-四甲基丁基)苯酚的聚合物 甲醇环氧乙烷与壬基酚的聚合物 甲胺聚合物与(氯甲基)环氧乙烷 甲硫代环氧丙烷 甲基环氧氯丙烷 甲基环氧巴豆酸酯 甲基环氧乙烷与环氧乙烷和十六烷基或十八烷基醚的聚合物 甲基环氧乙烷与[(2-丙烯基氧基)甲基]环氧乙烷聚合物 甲基环氧丙醇 甲基环氧丙烷 甲基N-丁-3-烯酰甘氨酸酸酯 甲基7-氧杂双环[4.1.0]庚-2,4-二烯-1-羧酸酯 甲基3-环丙基-2-环氧乙烷羧酸酯 甲基1-氧杂螺[2.5]辛烷-2-羧酸酯 甲基(2S,3R)-3-丙基-2-环氧乙烷羧酸酯 甲基(2R,3S)-3-丙基-2-环氧乙烷羧酸酯 甲基(2R,3R)-3-环丙基-2-环氧乙烷羧酸酯 环氧溴丙烷 环氧氯丙烷与双酚A、4-(1,1-二甲乙基)苯酚的聚合物 环氧氯丙烷-d5 环氧氯丙烷-D1 环氧氯丙烷-3,3’-亚氨基二丙胺的聚合物 环氧氯丙烷-2-13C 环氧氯丙烷 环氧氟丙烷 环氧树脂(环氧氯丙烷和二乙二醇) 环氧树脂 环氧柏木烷