摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(+/-)-1,2-dihydroxyethylphosphonic acid | 34697-87-5

中文名称
——
中文别名
——
英文名称
(+/-)-1,2-dihydroxyethylphosphonic acid
英文别名
1,2-dihydroxyethylphosphonic acid;1,2-dihydroxyethylphosphonate;rac-DHEP
(+/-)-1,2-dihydroxyethylphosphonic acid化学式
CAS
34697-87-5
化学式
C2H7O5P
mdl
——
分子量
142.048
InChiKey
JDBGBZHVBYODFB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    527.5±60.0 °C(Predicted)
  • 密度:
    1.866±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -2.8
  • 重原子数:
    8
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    98
  • 氢给体数:
    4
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (+/-)-1,2-dihydroxyethylphosphonic acid 作用下, 以 乙醇 为溶剂, 以0.6 g的产率得到(+/-)-1,2-dihydroxyethylphosphonic acid ammonium salt
    参考文献:
    名称:
    Studies on the biodegradation of fosfomycin: Growth of Rhizobium huakuii PMY1 on possible intermediates synthesised chemically
    摘要:
    R. huakuii PMY1 矿化磷霉素的第一步是水解开环,形成 (1R,2R)-1,2-二羟基丙基膦酸。通过化学方法合成了这种膦酸及其三种立体异构体,并测试了它们作为铵盐的矿化作用,Pi 的释放证明了这一点。只有 (1R,2R)-异构体被降解。化学合成了一些膦酸盐,如(±)-1,2-环氧丁基-、(±)-1,2-二羟乙基-、2-氧代丙基-、(S)-2-羟基丙基-、(±)-1-羟基丙基-和(±)-1-羟基-2-氧代丙基膦酸,但没有一种能支持生长。不过,在最后一种膦酸中检测到了体外 C-P 键裂解活性。由于亚磷酸不能用作磷源,因此必须放弃涉及亚磷酸的机制。R. huakuii PMY1 在(R)-和(S)-乳酸和羟基丙酮上生长良好,但在丙酸上生长较差,在丙酮或(R)-和(±)-1,2-丙二醇上生长不良。从(1R,2R)-1,2-二羟基丙基膦酸中释放出的 Pi 在 PO3H2 组中标记了一个氧-18,但在细胞中停留的时间不够长,无法通过酶的转换将 18O 完全交换为 16O。
    DOI:
    10.1039/b821829c
  • 作为产物:
    参考文献:
    名称:
    脱氢磷生物合成基因簇的分子克隆和异源表达
    摘要:
    Dehydrophos 是一种由 Streptomyces luridus 产生的乙烯基膦酸三肽,具有广谱抗生素活性。为了鉴定这种不寻常化合物的生物合成所必需的基因,我们筛选了 S. fosmid 文库。luridus 因为存在磷酸烯醇式丙酮酸变位酶基因,这是大多数膦酸盐生物合成所必需的。将一个这样的 fosmid 克隆整合到 S. 的染色体中。lividansled 异源生产脱氢磷。对该克隆的缺失分析允许鉴定最小的连续脱氢磷簇,其中包含 17 个开放阅读框 (ORF)。这些 ORF 的生物信息学分析与提出的从磷酸烯醇式丙酮酸生成脱氢磷的生物合成途径一致。
    DOI:
    10.1016/j.chembiol.2010.03.007
点击查看最新优质反应信息

文献信息

  • Characterization and structure of DhpI, a phosphonate <i>O</i> -methyltransferase involved in dehydrophos biosynthesis
    作者:Jin-Hee Lee、Brian Bae、Michael Kuemin、Benjamin T. Circello、William W. Metcalf、Satish K. Nair、Wilfred A. van der Donk
    DOI:10.1073/pnas.1006848107
    日期:2010.10.12

    Phosphonate natural products possess a range of biological activities as a consequence of their ability to mimic phosphate esters or tetrahedral intermediates formed in enzymatic reactions involved in carboxyl group metabolism. The dianionic form of these compounds at pH 7 poses a drawback with respect to their ability to mimic carboxylates and tetrahedral intermediates. Microorganisms producing phosphonates have evolved two solutions to overcome this hurdle: biosynthesis of monoanionic phosphinates containing two P-C bonds or esterification of the phosphonate group. The latter solution was first discovered for the antibiotic dehydrophos that contains a methyl ester of a phosphonodehydroalanine group. We report here the expression, purification, substrate scope, and structure of the O -methyltransferase from the dehydrophos biosynthetic gene cluster. The enzyme utilizes S -adenosylmethionine to methylate a variety of phosphonates including 1-hydroxyethylphosphonate, 1,2-dihydroxyethylphosphonate, and acetyl-1-aminoethylphosphonate. Kinetic analysis showed that the best substrates are tripeptides containing as C-terminal residue a phosphonate analog of alanine suggesting the enzyme acts late in the biosynthesis of dehydrophos. These conclusions are corroborated by the X-ray structure that reveals an active site that can accommodate a tripeptide substrate. Furthermore, the structural studies demonstrate a conformational change brought about by substrate or product binding. Interestingly, the enzyme has low substrate specificity and was used to methylate the clinical antibiotic fosfomycin and the antimalaria clinical candidate fosmidomycin, showing its promise for applications in bioengineering.

    膦酸天然产物具有一系列生物活性,这是因为它们能够模拟在羧基代谢中涉及的酶反应中形成的磷酸酯或四面体中间体。这些化合物在pH 7下的二阴离子形式对于模拟羧酸和四面体中间体的能力存在缺陷。产生膦酸的微生物已经演化出两种解决方案来克服这个障碍:合成含有两个P-C键的单阴离子膦酸盐或对膦酸基团进行酯化。后一种解决方案首次发现于含有膦酸脱氢丙氨酸甲酯基团的抗生素脱氢膦。我们在这里报道了脱氢膦生物合成基因簇中的O-甲基转移酶的表达、纯化、底物范围和结构。该酶利用S-腺苷甲硫氨酸对多种膦酸进行甲基化,包括1-羟乙基膦酸、1,2-二羟乙基膦酸和乙酰-1-氨基乙基膦酸。动力学分析表明,最佳底物是三肽,其C-末端残基是丙氨酸的膦酸类似物,这表明该酶在脱氢膦的生物合成过程中起到晚期作用。这些结论得到了X射线结构的证实,揭示了一个可以容纳三肽底物的活性位点。此外,结构研究表明,底物或产物结合引起了构象变化。有趣的是,该酶的底物特异性较低,并且已被用于甲基化临床抗生素磷霉素和抗疟疾临床候选药物磷膜多霉素,显示了其在生物工程应用中的潜力。
  • Molecular Cloning and Heterologous Expression of the Dehydrophos Biosynthetic Gene Cluster
    作者:Benjamin T. Circello、Andrew C. Eliot、Jin-Hee Lee、Wilfred A. van der Donk、William W. Metcalf
    DOI:10.1016/j.chembiol.2010.03.007
    日期:2010.4
    activity. To identify genes necessary for biosynthesis of this unusual compound we screened a fosmid library ofS. luridusfor the presence of the phosphoenolpyruvate mutase gene, which is required for biosynthesis of most phosphonates. Integration of one such fosmid clone into the chromosome ofS. lividansled to heterologous production of dehydrophos. Deletion analysis of this clone allowed identification
    Dehydrophos 是一种由 Streptomyces luridus 产生的乙烯基膦酸三肽,具有广谱抗生素活性。为了鉴定这种不寻常化合物的生物合成所必需的基因,我们筛选了 S. fosmid 文库。luridus 因为存在磷酸烯醇式丙酮酸变位酶基因,这是大多数膦酸盐生物合成所必需的。将一个这样的 fosmid 克隆整合到 S. 的染色体中。lividansled 异源生产脱氢磷。对该克隆的缺失分析允许鉴定最小的连续脱氢磷簇,其中包含 17 个开放阅读框 (ORF)。这些 ORF 的生物信息学分析与提出的从磷酸烯醇式丙酮酸生成脱氢磷的生物合成途径一致。
  • Studies on the biodegradation of fosfomycin: Growth of Rhizobium huakuii PMY1 on possible intermediates synthesised chemically
    作者:John W. McGrath、Friedrich Hammerschmidt、Werner Preusser、John P. Quinn、Anna Schweifer
    DOI:10.1039/b821829c
    日期:——
    The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R,2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of Pi. Only the (1R,2R)-isomer was degraded. A number of salts of phosphonic acids such as (±)-1,2-epoxybutyl-, (±)-1,2-dihydroxyethyl-, 2-oxopropyl-, (S)-2-hydroxypropyl-, (±)-1-hydroxypropyl- and (±)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C–P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and (S)-lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (±)-1,2-propanediol. The Pi released from (1R,2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2group did not stay long enough in the cells to allow complete exchange of 18O for 16O by enzymic turnover.
    R. huakuii PMY1 矿化磷霉素的第一步是水解开环,形成 (1R,2R)-1,2-二羟基丙基膦酸。通过化学方法合成了这种膦酸及其三种立体异构体,并测试了它们作为铵盐的矿化作用,Pi 的释放证明了这一点。只有 (1R,2R)-异构体被降解。化学合成了一些膦酸盐,如(±)-1,2-环氧丁基-、(±)-1,2-二羟乙基-、2-氧代丙基-、(S)-2-羟基丙基-、(±)-1-羟基丙基-和(±)-1-羟基-2-氧代丙基膦酸,但没有一种能支持生长。不过,在最后一种膦酸中检测到了体外 C-P 键裂解活性。由于亚磷酸不能用作磷源,因此必须放弃涉及亚磷酸的机制。R. huakuii PMY1 在(R)-和(S)-乳酸和羟基丙酮上生长良好,但在丙酸上生长较差,在丙酮或(R)-和(±)-1,2-丙二醇上生长不良。从(1R,2R)-1,2-二羟基丙基膦酸中释放出的 Pi 在 PO3H2 组中标记了一个氧-18,但在细胞中停留的时间不够长,无法通过酶的转换将 18O 完全交换为 16O。
查看更多

同类化合物

(1-氨基丁基)磷酸 顺丙烯基磷酸 除草剂BUMINAFOS 阿仑膦酸 阻燃剂 FRC-1 铵甲基膦酸盐 钠甲基乙酰基膦酸酯 钆1,5,9-三氮杂环十二烷-N,N',N''-三(亚甲基膦酸) 钆-1,4,7-三氮杂环壬烷-N,N',N''-三(亚甲基膦酸) 重氮甲基膦酸二乙酯 辛基膦酸二丁酯 辛基膦酸 辛基-膦酸二钾盐 辛-1-烯-2-基膦酸 试剂12-Azidododecylphosphonicacid 英卡膦酸 苯胺,4-乙烯基-2-(1-甲基乙基)- 苯甲基膦酸二甲酯 苯基膦酸二甲酯 苯基膦酸二仲丁酯 苯基膦酸二乙酯 苯基膦酸二乙酯 苯基磷酸二辛酯 苯基二异辛基亚磷酸酯 苯基(1H-1,2,4-三唑-1-基)甲基膦酸二乙酯 苯丁酸,b-氨基-g-苯基- 苄基膦酸苄基乙酯 苄基亚甲基二膦酸 膦酸,[(2-乙基己基)亚氨基二(亚甲基)]二,triammonium盐(9CI) 膦酸叔丁酯乙酯 膦酸单十八烷基酯钾盐 膦酸二辛酯 膦酸二(二十一烷基)酯 膦酸,辛基-,单乙基酯 膦酸,甲基-,单(2-乙基己基)酯 膦酸,甲基-,二(苯基甲基)酯 膦酸,甲基-,2-甲氧基乙基1-甲基乙基酯 膦酸,丁基乙基酯 膦酸,[苯基[(苯基甲基)氨基]甲基]-,二甲基酯 膦酸,[[羟基(苯基甲基)氨基]苯基甲基]-,二(苯基甲基)酯 膦酸,[2-(环丙基氨基)-2-羰基乙基]-,二乙基酯 膦酸,[2-(二甲基亚肼基)丙基]-,二乙基酯,(E)- 膦酸,[1-甲基-2-(苯亚氨基)乙烯基]-,二乙基酯 膦酸,[1-(乙酰基氨基)-1-甲基乙基]-(9CI) 膦酸,[(环己基氨基)苯基甲基]-,二乙基酯 膦酸,[(二乙氧基硫膦基)(二甲氨基)甲基]- 膦酸,[(2S)-2-氨基-2-苯基乙基]-,二乙基酯 膦酸,[(1Z)-2-氨基-2-(2-噻嗯基)乙烯基]-,二乙基酯 膦酸,P-[(二乙胺基)羰基]-,二乙基酯 膦酸,(氨基二环丙基甲基)-