General asymmetric synthesis of isoquinoline alkaloids. Enantioselective hydrogenation of enamides catalyzed by BINAP-ruthenium(II) complexes
摘要:
In the presence of a small amount of RuX(2)[(R)- or (S)-BINAP] (X = anionic ligand) a wide range of (Z)-2-acyl-1-benzylidene-1,2,3,4-tetrahydroisoquinolines are hydrogenated to give the saturated products in nearly quantitative yields and in high (up to 100 %) optical yields. The enamide substrates are selectively prepared by N-acylation of the corresponding 1-benzylated 3,4-dihydroisoquinolines under suitable acylation conditions; some crystalline materials having low solubility are obtained by a second-order Z/E stereomutation technique utilizing the double-bond photolability and lattice energy effects. This asymmetric hydrogenation sets the key stereogenic center in a predictable manner, either R or S flexibly, at the C(1) position of the benzylated tetrahydroisoquinolines. The chiral products are converted by standard functional group modification to tetrahydropapaverine, laudanosine, tretoquinol, norreticuline, etc. Hydrogenation of the simple 1-methylene substrate is used fbr synthesis of salsolidine. This enantioselective hydrogenation is applied to the synthesis of morphine and its artificial analogues such as morphinans and benzomorphans of either chirality. A mnemonic device is presented for predicting the reactivity and enantiofacial selection of the BINAP-Ru catalyzed hydrogenation. Reaction with BINAP-Rh catalyst proceeds with a lower enantioselectivity and an opposite sense of asymmetric induction.
Organocatalytic Enantioselective Pictet–Spengler Approach to Biologically Relevant 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline Alkaloids
作者:Andrea Ruiz-Olalla、Martien A. Würdemann、Martin J. Wanner、Steen Ingemann、Jan H. van Maarseveen、Henk Hiemstra
DOI:10.1021/acs.joc.5b00509
日期:2015.5.15
A general procedure for the synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinolines was developed, based on organocatalytic, regio- and enantioselective Pictet-Spengler reactions (86-92% ee) of N-(o-nitrophenylsulfenyl)-2-arylethyl-amines with arylacetaldehydes. The presence of the o-nitrophenylsulfenyl group, together with the MOM-protection in the catechol part of the tetrahydroisoquinoline ring system, appeared to be a productive combination. To demonstrate the versatility of this approach, 10 biologically and pharmaceutically relevant alkaloids were prepared using (R)-TRIP as the chiral catalyst: (R)-norcoclaurine, (R)-coclaurine, (R)-norreticuline, (R)-reticuline, (R)-trimemetoquinol, (R)-armepavine, (R)-norprotosinomenine, (R)-protosinomenine, (R)-laudanosine, and (R)-5-methoxylaudanosine.
General asymmetric synthesis of isoquinoline alkaloids. Enantioselective hydrogenation of enamides catalyzed by BINAP-ruthenium(II) complexes
In the presence of a small amount of RuX(2)[(R)- or (S)-BINAP] (X = anionic ligand) a wide range of (Z)-2-acyl-1-benzylidene-1,2,3,4-tetrahydroisoquinolines are hydrogenated to give the saturated products in nearly quantitative yields and in high (up to 100 %) optical yields. The enamide substrates are selectively prepared by N-acylation of the corresponding 1-benzylated 3,4-dihydroisoquinolines under suitable acylation conditions; some crystalline materials having low solubility are obtained by a second-order Z/E stereomutation technique utilizing the double-bond photolability and lattice energy effects. This asymmetric hydrogenation sets the key stereogenic center in a predictable manner, either R or S flexibly, at the C(1) position of the benzylated tetrahydroisoquinolines. The chiral products are converted by standard functional group modification to tetrahydropapaverine, laudanosine, tretoquinol, norreticuline, etc. Hydrogenation of the simple 1-methylene substrate is used fbr synthesis of salsolidine. This enantioselective hydrogenation is applied to the synthesis of morphine and its artificial analogues such as morphinans and benzomorphans of either chirality. A mnemonic device is presented for predicting the reactivity and enantiofacial selection of the BINAP-Ru catalyzed hydrogenation. Reaction with BINAP-Rh catalyst proceeds with a lower enantioselectivity and an opposite sense of asymmetric induction.