Surface Plasmon Resonance Biosensor Based Fragment Screening Using Acetylcholine Binding Protein Identifies Ligand Efficiency Hot Spots (LE Hot Spots) by Deconstruction of Nicotinic Acetylcholine Receptor α7 Ligands
摘要:
The soluble acetylcholine binding protein (AChBP) is a homologue of the ligand-binding domain of the nicotinic acetylcholine receptors (nAChR). To guide future fragment-screening using surface plasmon resonance (SPR) biosensor technology as a label-free, direct binding, biophysical screening assay, a focused fragment library was generated based on deconstruction of a set of alpha 7 nAChR selective quinuclidine containing ligands with nanomolar affinities. The interaction characteristics of the fragments and the parent compounds with AChBP) were evaluated using an SPR biosensor assay. The data obtained from this direct binding assay correlated well with data from the reference radioligand displacement assay. Ligand efficiencies for different (structural) groups of fragments in the library were correlated to binding with distinct regions of the binding pocket, thereby identifying ligand efficiency hot spots (LE hot spots). These hot spots can be used to identity the most promising hit fragments in a large scale fragment library screen.
A novel and excellent method for preventing and/or treating diseases related to a cannabinoid type 2 receptor, based on an agonistic action on a cannabinoid type 2 receptor. It was found that a hetero ring derivative mainly having two substituents, for example, a pyrimidine-5-carboxamide derivative having a substituent amino group at the 2-position, exhibits a potent agonistic action on a cannabinoid type 2 receptor, and can be an agent for preventing and/or treating diseases related to a cannabinoid type 2 receptor such as inflammatory diseases, pain, and the like.
The present invention provides compounds of Formula (I), pharmaceutical compositions thereof, and method of using the same in the treatment or prevention of diseases mediated by the activation of β3-adrenoceptor.