3′-[4-Aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidine Analogues as Potent and Selective Inhibitors of Human Mitochondrial Thymidine Kinase
摘要:
In an effort to increase the potency and selectivity of earlier identified substrate-based inhibitors of mitochondrial thymidine kinase 2 (TK-2), we now describe the synthesis of new thymidine analogues containing a 4- or 5-substituted 1,2,3-triazol-1-yl substituent at the 3'-position of the 2'-deoxyribofuranosyl ring. These analogues were prepared by Cu- and Ru-catalyzed cycloadditions of 3'-azido-3'-deoxythymidine and the appropriate alkynes, which produced the 1,4- and 1,5-triazoles, respectively. Selected analogues showed nanomolar inhibitory activity for TK-2, while virtually not affecting the TK-1 counterpart. Enzyme kinetics indicated a competitive and uncompetitive inhibition profile against thymidine and the cosubstrate ATP, respectively. This behavior is rationalized by suggesting that the inhibitors occupy the substrate-binding site in a TK-2 ATP complex that maintains the enzyme's active site in a closed conformation through the stabilization of a small lid domain.
NOVEL COMPOUNDS WITH THYMINE SKELETON FOR USE IN MEDICINE
申请人:TECHNISCHE UNIVERSITÄT DRESDEN
公开号:US20210130328A1
公开(公告)日:2021-05-06
The present invention relates to novel compounds as new chemical entities with thymine skeleton, these compounds for use as in medicine, especially in the treatment of carcinoma, HSP27-associated diseases and cystic fibrosis; and a pharmaceutical product containing at least one of these compounds. Finally, a method of production of that novel compounds is presented.
General formula of these compounds is formula (I):
as further defined in claim
1.
Thymine derivatives and quinazoline-dione derivatives for the inhibition of HSP27
申请人:TECHNISCHE UNIVERSITAET DRESDEN
公开号:US10940150B2
公开(公告)日:2021-03-09
The present invention relates to novel HSP27 inhibitors, in particular thymine derivatives according to general formula (VI), (VII) or (VII) and phenothiazine derivatives according to formula (V), and to their use as drugs for the selective inhibition of the heat shock protein HSP27 (HSPB1), in particular for use in the treatment of carcinomas or cystic fibrosis, said inhibitors having a particularly advantageous activity in the lower micromolar or sub-micromolar active ingredient concentration range with respect to HSP27.
Compounds with thymine skeleton for use in medicine
申请人:TECHNISCHE UNIVERSITÄT DRESDEN
公开号:US11214564B2
公开(公告)日:2022-01-04
The present invention relates to novel compounds as new chemical entities with thymine skeleton, these compounds for use as in medicine, especially in the treatment of carcinoma, HSP27-associated diseases and cystic fibrosis; and a pharmaceutical product containing at least one of these compounds. Finally, a method of production of that novel compounds is presented.
General formula of these compounds is formula (I):
as further defined in claim 1.
The present invention relates to novel HSP27 inhibitors, in particular purine derivatives according to general formula (I) or (II) and phenothiazine derivatives according to formula (V), and to their use as drugs for the selective inhibition of the heat shock protein HSP27 (HSPB1), in particular for use in the treatment of carcinomas or cystic fibrosis, said inhibitors having a particularly advantageous activity in the lower micromolar or sub-micromolar active ingredient concentration range with respect to HSP2.
THYMINE DERIVATIVES AND QUINAZOLINE-DIONE DERIVATIVES FOR THE INHIBITION OF HSP27
申请人:TECHNISCHE UNIVERSITAET DRESDEN
公开号:US20180207160A1
公开(公告)日:2018-07-26
The present invention relates to novel HSP27 inhibitors, in particular thymine derivatives according to general formula (VI), (VII) or (VII) and phenothiazine derivatives according to formula (V), and to their use as drugs for the selective inhibition of the heat shock protein HSP27 (HSPB1), in particular for use in the treatment of carcinomas or cystic fibrosis, said inhibitors having a particularly advantageous activity in the lower micromolar or sub-micromolar active ingredient concentration range with respect to HSP27.