摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Glycoldial, bis-O-pentafluorobenzyloxime

中文名称
——
中文别名
——
英文名称
Glycoldial, bis-O-pentafluorobenzyloxime
英文别名
N,N'-bis[(2,3,4,5,6-pentafluorophenyl)methoxy]ethane-1,2-diimine
Glycoldial, bis-O-pentafluorobenzyloxime化学式
CAS
——
化学式
C16H6F10N2O2
mdl
——
分子量
448.22
InChiKey
VNVBOBJSRGZDCW-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.8
  • 重原子数:
    30
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.12
  • 拓扑面积:
    43.2
  • 氢给体数:
    0
  • 氢受体数:
    14

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Fe(0)分解多环硝胺炸药CL-20。
    摘要:
    CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane),C6H6N12O12是一种新兴的高能化学物质,可以替代RDX,但其降解途径为不知名。在本研究中,零价铁用于降解CL-20,目的是确定其产物和降解途径。在没有氧气的情况下,CL-20会迅速分解,同时形成亚硝酸盐,最终生成一氧化二氮,铵,甲酸,乙二醛和乙醇酸。LC / MS(ES-)显示了几种关键产品的存在,这些关键产品提供了有关CL-20降解的初始反应的重要信息。例如,检测到CL-20的双脱硝中间体以及高能化学品的单亚硝基和二亚硝基衍生物。另外两种中间体的[MH]-分别位于392和376 Da,分别检测到匹配的C6H7N11O10和C6H7N11O9经验公式。使用15N标记的CL-20,初步确定这两种中间体分别为CL-20及其一亚硝基衍生物的脱氮产物。本实验发现
    DOI:
    10.1021/es049423h
点击查看最新优质反应信息

文献信息

  • Henry's Law Constants of Carbonyl−Pentafluorobenzyl Hydroxylamine (PFBHA) Derivatives in Aqueous Solution
    作者:Hugo Destaillats、M. Judith Charles
    DOI:10.1021/je025545i
    日期:2002.11.1
    components in urban and rural atmospheres. The design of efficient samplers based on aqueous solutions of the derivatization reagent O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) requires knowledge of how the carbonyl−PFBHA derivatives partition between water and air. We have determined the Henry's law constant at 25 °C for 16 PFBHA derivatives of carbonyls that represent typical analytes present
    空气中羰基化合物的原位衍生化可以提高旨在量化城市和农村大气中这些痕量成分的采样方法的效率。基于衍生试剂O-(2,3,4,5,6-五氟苄基)羟胺(PFBHA)的水溶液的高效采样器的设计需要知道羰基-PFBHA衍生物如何在水和空气之间分配。我们已经确定了代表在环境中存在的典型分析物的16种羰基PFBHA衍生物在25°C下的亨利定律常数。采用惰性气体汽提方法,然后通过GC-离子阱质谱法(GC / ITMS)测量衍生物的水溶液浓度。亨利定律常数的取值范围是(37至268)Pa·m3 ·mol -1。我们评估了几个分子描述符,以研究这些化合物的分配行为的定量结构-性质关系(QSPR)。分子体积,分子表面积和极化率与k H更好地相关,而偶极矩被证明是极不敏感的描述子。评估了K H在(5至25)°C范围内的温度依赖性。这些数据导致的估计Δ ħ ∞和Δ小号∞,其范围为从Δ ħ ∞ =(17至60)千焦·摩尔-1和Δ小号∞
  • Detection limits of electron and electron capture negative ionization-mass spectrometry for aldehydes derivatized with <i>o</i>-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride
    作者:Josef Beránek、Darrin A. Muggli、Alena Kubátová
    DOI:10.1016/j.jasms.2009.12.009
    日期:2010.4.1
    In contrast to common expectations, the differences in limits of detection (LODs) between electron capture negative ionization (ECNI) and electron ionization (EI) mass spectrometry (MS) were found to be insignificant for a wide range of aldehydes derivatized with o-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride. Comparison of the two ionization methods based on LOD confidence intervals revealed that a traditional presentation of the LOD or limit of quantitation (LOQ) as a single value may over/underestimate the significance of obtained results. LODs were between 20 and 150 pg injected for the majority of tested derivatized carbonyls using both ionization methods. ECNI-MS improved LODs by ∼10- to 20-fold only for two derivatized aldehydes, 4-hydroxybenzaldehyde and 5-(hydroxymethyl)furfural. Selectivity of ECNI did not appear to be beneficial when analyzing a wood smoke particulate matter (WS-PM) extract, possibly because the majority of interferences were removed during sample preparation (i.e., liquid-liquid extraction). The impact of four different data acquisition modes of transmission quadrupole (TQ)-MS on LODs and their precisions was also investigated. As expected, LODs in the selected ion monitoring (SIM) were ∼two to four times lower than those obtained using total ion current (TIC) mode. More importantly, TQ-MS in the selected ion-total ion (SITI) mode (i.e., acquiring SIM and TIC data in a single analysis) provided signal-to-noise ratios and precisions, which were comparable to SIM alone.
    与常见预期相反,电子捕获负离子化(ECNI)和电子离子化(EI)质谱(MS)在检测限(LOD)方面的差异,对于一系列与o-(2,3,4,5,6-五氟苯基)-羟胺盐酸盐衍生化的醛类物质,发现并不显著。基于LOD置信区间对这两种离子化方法的比较显示,传统将LOD或定量限(LOQ)呈现为单一值的方法,可能会高估或低估所获得结果的重要性。使用这两种离子化方法测试的大多数衍生化羰基物质的LOD在20到150皮克克之间。ECNI-MS仅对两个衍生化醛类物质,即4-羟基苯甲醛和5-(羟甲基)呋喃醛,将LOD提高了约10到20倍。ECNI的选择性在分析木烟颗粒物(WS-PM)提取物时似乎并不有利,这可能是因为在样品准备过程中(即液-液提取)大多数干扰物质已被去除。还调查了四种不同数据采集模式下的传输四极杆(TQ)-MS对LOD及其精度的影响。正如预期的那样,选择离子监测(SIM)模式下的LOD大约比使用总离子流(TIC)模式获得的值低两到四倍。更重要的是,TQ-MS在选择离子-总离子(SITI)模式下(即在一次分析中同时获得SIM和TIC数据)提供的信噪比和精度与单独的SIM相当。
  • β-Ionone reactions with the nitrate radical: Rate constant and gas-phase products
    作者:Joel C. Harrison、Jason E. Ham
    DOI:10.1002/kin.20438
    日期:2009.10
    the derivatized reaction products coupled with plausible β‐ionone + NO3• reaction mechanisms based on previously published volatile organic compound + NO3• gasphase mechanisms. The additional gasphase products 5‐acetyl‐2‐ethylidene‐3‐methylcyclopentyl nitrate, 1‐(1‐hydroxy‐7,7‐dimethyl‐2,3,4,5,6,7‐hexahydro‐1 H‐inden‐2‐yl)ethanone, 1‐(1‐hydroxy‐3a,7‐dimethyl‐2,3,3a,4,5,6,‐hexahydro‐1 H‐inden‐2‐yl)ethanone
    使用相对速率技术测量硝酸根(NO 3 •)与4-(2,6,6)反应的相对分子质量常数k(9.4±2.4×10 -12 cm 3分子-1 s -1) -(三甲基-1-环己烯-1-基)-3-丁烯-2-酮(β-紫罗兰酮)在(297±3)K和1个大气压的总压力下此外,β-紫罗兰酮+ NO 3的产物•鉴定出的反应产物为乙二醛(HC(O)C(O)H)和甲基乙二醛(CH 3C(= O)C(= O)H)。衍生试剂O-(2,3,4,5,6-五氟苄基)羟胺和N,O-双(三甲基甲硅烷基)三氟乙酰胺用于提出其他主要反应产物:3-氧代丁烷-1,2-二基硝酸酯,2 ,6,6-三甲基环己-1-烯醛,2-氧代-1-(2,6,6-三甲基环己-1-烯-1-基)硝酸乙酯,戊烷-2,4-二酮,3-氧-1-(2,6,6-三甲基环己-1-烯-1-基)丁烷1,2-二硝酸二酯,3,3-二甲基环己烷-1,2-二酮和4-氧戊二-2-烯。
  • Study of the Atmospheric Chemistry of 2-Formylcinnamaldehyde
    作者:Sara M. Aschmann、Janet Arey、Roger Atkinson
    DOI:10.1021/jp404994w
    日期:2013.8.22
    2-Formylcinnamaldehyde is a significant product of the reaction of naphthalene with OH radicals, and its photolysis and gas-phase reactions with O-3, NO3 radicals, and OH radicals have been investigated in this work. 2-Formylcinnamaldehyde was observed to undergo photolysis by black lamps, with a photolysis rate of 0.14 x J(NO2), where J(NO2) is the NO2 photolysis rate. The measured rate constants for the reactions of 2-formylcinnamaldehyde with O-3, NO3 radicals, and OH radicals (in units of cm(3) molecule(-1) s(-1)) were 1.8 x 10(-18), 4.3 x 10(-14), and 2.1 x 10(-11), respectively, with those for the O-3 and NO3 reactions being for the E-isomer. 2-Formylcinnamaldehyde was observed to undergo significant adsorption and desorption from the reaction chamber Teflon film walls, and the photolysis rate and rate constants are subject to significant uncertainties. In the atmosphere, the dominant chemical loss processes for 2-formylcinnamaldehyde will be photolysis during daylight hours and reaction with NO3 radicals during nighttime. Phthaldialdehyde and glyoxal were observed as products of the OH radical and O-3 reactions, and photolysis of E-2-formylcinnamaldehyde led to formation of Z-2-formylcinnamaldehyde plus two other molecular weight 160 isomers. The present results are compared with previous literature data, and reaction mechanisms are discussed.
  • Decomposition of the Polycyclic Nitramine Explosive, CL-20, by Fe<sup>0</sup>
    作者:Vimal K. Balakrishnan、Fanny Monteil-Rivera、Annamaria Halasz、Aurelian Corbeanu、Jalal Hawari
    DOI:10.1021/es049423h
    日期:2004.12.1
    C6H6N12O12, is an emerging energetic chemical that may replace RDX, but its degradation pathways are not well-known. In the present study, zerovalent iron was used to degrade CL-20 with the aim of determining its products and degradation pathways. In the absence of O2, CL-20 underwent a rapid decomposition with the concurrent formation of nitrite to ultimately produce nitrous oxide, ammonium, formate, glyoxal
    CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane),C6H6N12O12是一种新兴的高能化学物质,可以替代RDX,但其降解途径为不知名。在本研究中,零价铁用于降解CL-20,目的是确定其产物和降解途径。在没有氧气的情况下,CL-20会迅速分解,同时形成亚硝酸盐,最终生成一氧化二氮,铵,甲酸,乙二醛和乙醇酸。LC / MS(ES-)显示了几种关键产品的存在,这些关键产品提供了有关CL-20降解的初始反应的重要信息。例如,检测到CL-20的双脱硝中间体以及高能化学品的单亚硝基和二亚硝基衍生物。另外两种中间体的[MH]-分别位于392和376 Da,分别检测到匹配的C6H7N11O10和C6H7N11O9经验公式。使用15N标记的CL-20,初步确定这两种中间体分别为CL-20及其一亚硝基衍生物的脱氮产物。本实验发现
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐