Evaluation of the Arrhenius parameters for ring closure of the 3-methyl-3-azahex-5-enyl radical is reported. Cyclization of the radical is found to occur with high regioselectivity giving the exo -trig product exclusively with an activation energy of 22 kJ mol-1 and log A value of 11.1. The experimental activation barrier compares favourably with that determined by force field calculations which predict a value of 21 kJ mol-1. The 3-methyl-3-azahex-5-enyl radical is therefore found to undergo ring closure some 70 times faster than the parent hex-5-enyl radical, in accord with predictions based upon geometrical considerations.