摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[4-[(Tetrahydro-2H-pyran2-yl)oxy]-1-butynyl]-phosphonic acid, diethyl ester | 148665-72-9

中文名称
——
中文别名
——
英文名称
[4-[(Tetrahydro-2H-pyran2-yl)oxy]-1-butynyl]-phosphonic acid, diethyl ester
英文别名
2-(4-diethoxyphosphorylbut-3-ynoxy)oxane
[4-[(Tetrahydro-2H-pyran2-yl)oxy]-1-butynyl]-phosphonic acid, diethyl ester化学式
CAS
148665-72-9
化学式
C13H23O5P
mdl
——
分子量
290.296
InChiKey
HQPWGSFDRMJVJA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    19
  • 可旋转键数:
    7
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.85
  • 拓扑面积:
    54
  • 氢给体数:
    0
  • 氢受体数:
    5

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    [4-[(Tetrahydro-2H-pyran2-yl)oxy]-1-butynyl]-phosphonic acid, diethyl ester对甲苯磺酸三乙胺 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 16.0h, 生成 4-(diethoxyphosphinyl)-3-butynyl methanesulfonate
    参考文献:
    名称:
    Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
    摘要:
    A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([H-3]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [Ca-45(2+)] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2-mu-M) was retained for analogues (31 and 32, Table 1; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper. 1
    DOI:
    10.1021/jm00086a005
  • 作为产物:
    参考文献:
    名称:
    Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
    摘要:
    A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([H-3]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [Ca-45(2+)] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2-mu-M) was retained for analogues (31 and 32, Table 1; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper. 1
    DOI:
    10.1021/jm00086a005
点击查看最新优质反应信息

文献信息

  • N-substituted .alpha.-amino acids and derivatives thereof having
    申请人:Warner-Lambert Company
    公开号:US05179085A1
    公开(公告)日:1993-01-12
    N-substituted .alpha.-amino acids and derivatives thereof are described, as well as methods for the preparation and pharmaceutical composition of same, which are useful in selectively blocking the N-methyl-D-aspartate (NMDA) excitatory amino acid receptors in mammals and also are useful in treating cerebrovascular disorders such as cerebral ischemia or cerebral infarction resulting from thromboembolic or hemorrhagic stroke, cerebral vasospasm, hypoglycemia, cardiac arrest, status epilepticus and cerebral trauma as well as for treating schizophrenia, epilepsy, neurodegenerative disorders, Alzheimer's disease or Huntington's disease and also additionally useful as anesthetics in surgical procedures where a finite risk of cerebrovascular damage exists.
    本文介绍了N-取代的α-氨基酸及其衍生物,以及制备方法和药物组成物,这些物质在哺乳动物中选择性地阻断N-甲基-D-天门冬氨酸(NMDA)兴奋性氨基酸受体方面有用,也可用于治疗脑血管疾病,如由栓塞性或出血性中风引起的脑缺血或脑梗死、脑血管痉挛、低血糖、心脏停跳、持续性癫痫状态和脑外伤,以及治疗精神分裂症、癫痫、神经退行性疾病、阿尔茨海默病或亨廷顿病,并且还可作为麻醉剂用于存在有限脑血管损伤风险的外科手术中。
  • Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
    作者:Christopher F. Bigge、Graham Johnson、Daniel F. Ortwine、James T. Drummond、Daniel M. Retz、Laura J. Brahce、Linda L. Coughenour、Frank W. Marcoux、Albert W. Probert
    DOI:10.1021/jm00086a005
    日期:1992.4
    A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([H-3]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [Ca-45(2+)] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2-mu-M) was retained for analogues (31 and 32, Table 1; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper. 1
查看更多

同类化合物

(1-氨基丁基)磷酸 顺丙烯基磷酸 除草剂BUMINAFOS 阿仑膦酸 阻燃剂 FRC-1 铵甲基膦酸盐 钠甲基乙酰基膦酸酯 钆1,5,9-三氮杂环十二烷-N,N',N''-三(亚甲基膦酸) 钆-1,4,7-三氮杂环壬烷-N,N',N''-三(亚甲基膦酸) 重氮甲基膦酸二乙酯 辛基膦酸二丁酯 辛基膦酸 辛基-膦酸二钾盐 辛-1-烯-2-基膦酸 试剂12-Azidododecylphosphonicacid 英卡膦酸 苯胺,4-乙烯基-2-(1-甲基乙基)- 苯甲基膦酸二甲酯 苯基膦酸二甲酯 苯基膦酸二仲丁酯 苯基膦酸二乙酯 苯基膦酸二乙酯 苯基磷酸二辛酯 苯基二异辛基亚磷酸酯 苯基(1H-1,2,4-三唑-1-基)甲基膦酸二乙酯 苯丁酸,b-氨基-g-苯基- 苄基膦酸苄基乙酯 苄基亚甲基二膦酸 膦酸,[(2-乙基己基)亚氨基二(亚甲基)]二,triammonium盐(9CI) 膦酸叔丁酯乙酯 膦酸单十八烷基酯钾盐 膦酸二辛酯 膦酸二(二十一烷基)酯 膦酸,辛基-,单乙基酯 膦酸,甲基-,单(2-乙基己基)酯 膦酸,甲基-,二(苯基甲基)酯 膦酸,甲基-,2-甲氧基乙基1-甲基乙基酯 膦酸,丁基乙基酯 膦酸,[苯基[(苯基甲基)氨基]甲基]-,二甲基酯 膦酸,[[羟基(苯基甲基)氨基]苯基甲基]-,二(苯基甲基)酯 膦酸,[2-(环丙基氨基)-2-羰基乙基]-,二乙基酯 膦酸,[2-(二甲基亚肼基)丙基]-,二乙基酯,(E)- 膦酸,[1-甲基-2-(苯亚氨基)乙烯基]-,二乙基酯 膦酸,[1-(乙酰基氨基)-1-甲基乙基]-(9CI) 膦酸,[(环己基氨基)苯基甲基]-,二乙基酯 膦酸,[(二乙氧基硫膦基)(二甲氨基)甲基]- 膦酸,[(2S)-2-氨基-2-苯基乙基]-,二乙基酯 膦酸,[(1Z)-2-氨基-2-(2-噻嗯基)乙烯基]-,二乙基酯 膦酸,P-[(二乙胺基)羰基]-,二乙基酯 膦酸,(氨基二环丙基甲基)-