N-Alkylation of 2,6-Dichloropurine Hydrochloride with a Variety of Alcohols over Alumina Catalyst
摘要:
2,6-Dichloropurine hydrochloride reacts with various types of alcohols using different alumina catalysts and converts into its N-9-alkyl-2-chloro-6-hydroxy-9H-purine products to an extent of 49-74%. The product selectivity depends on the stability of carbocation generated from the alcohol. More stable carbocation formulates both N-7 and N-9-alkyl-2,6-dichloropurine products, whereas the less stable carbocation results in exclusively N-9-alkyl-2-chloro-6-hydroxy-9H-purine. The catalytic activity of alumina prepared using the sol-gel method has larger Brunauer, Emmett, and Teller (BET) surface area and hence shows significantly greater catalytic activity than the commercially available alumina samples.
2,6-Dichloropurine hydrochloride reacts with various types of alcohols using different alumina catalysts and converts into its N-9-alkyl-2-chloro-6-hydroxy-9H-purine products to an extent of 49-74%. The product selectivity depends on the stability of carbocation generated from the alcohol. More stable carbocation formulates both N-7 and N-9-alkyl-2,6-dichloropurine products, whereas the less stable carbocation results in exclusively N-9-alkyl-2-chloro-6-hydroxy-9H-purine. The catalytic activity of alumina prepared using the sol-gel method has larger Brunauer, Emmett, and Teller (BET) surface area and hence shows significantly greater catalytic activity than the commercially available alumina samples.