Identification and X-ray Co-crystal Structure of a Small-Molecule Activator of LFA-1-ICAM-1 Binding
摘要:
AbstractStabilization of protein–protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X‐ray co‐crystal structure determination of IBE‐667, an ICAM‐1 binding enhancer for LFA‐1. IBE‐667 was designed based on the SAR information obtained from an on‐bead screen of tagged one‐bead one‐compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE‐667 in promoting the binding of LFA‐1 on activated immune cells to ICAM‐1.
Identification and X-ray Co-crystal Structure of a Small-Molecule Activator of LFA-1-ICAM-1 Binding
摘要:
AbstractStabilization of protein–protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X‐ray co‐crystal structure determination of IBE‐667, an ICAM‐1 binding enhancer for LFA‐1. IBE‐667 was designed based on the SAR information obtained from an on‐bead screen of tagged one‐bead one‐compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE‐667 in promoting the binding of LFA‐1 on activated immune cells to ICAM‐1.
AbstractStabilization of protein–protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X‐ray co‐crystal structure determination of IBE‐667, an ICAM‐1 binding enhancer for LFA‐1. IBE‐667 was designed based on the SAR information obtained from an on‐bead screen of tagged one‐bead one‐compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE‐667 in promoting the binding of LFA‐1 on activated immune cells to ICAM‐1.