摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-tert-butyldiphenylsilyloxypropionic acid | 352708-78-2

中文名称
——
中文别名
——
英文名称
3-tert-butyldiphenylsilyloxypropionic acid
英文别名
3-(tert-Butyl-diphenyl-silanyl)-propionic acid;3-[Tert-butyl(diphenyl)silyl]propanoic acid
3-tert-butyldiphenylsilyloxypropionic acid化学式
CAS
352708-78-2
化学式
C19H24O2Si
mdl
——
分子量
312.484
InChiKey
FXHLKZRJPKUCTM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.52
  • 重原子数:
    22
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.32
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3-tert-butyldiphenylsilyloxypropionic acid三氟甲磺酸三甲基乙酰氯三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 0.5h, 生成 3-(tert-Butyl-hydroxy-phenyl-silanyl)-N,N-dimethyl-propionamide
    参考文献:
    名称:
    Studies in silanol synthesis: internal nucleophiles and steric hindrance
    摘要:
    As a model system for the synthesis of complex silanediols, N,N-dimethyl 3-(tert-butyldiphenylsilyl)propionamide was prepared and treated with triflic acid, resulting in the removal of one phenyl group and yielding a silanol. Even with a large excess of triflic acid, only a single phenyl group could be removed. This contrasts with a diphenylsilyl group flanked by a pair of amides, for which both phenyl groups are rapidly cleaved. A combination of steric hindrance by the tert-butyl group and lack of a second internal nucleophile appears to limit triflic acid-mediated phenyl hydrolysis from the silicon. (C) 2001 Published by Elsevier Science Ltd.
    DOI:
    10.1016/s0040-4039(01)00576-7
  • 作为产物:
    参考文献:
    名称:
    Studies in silanol synthesis: internal nucleophiles and steric hindrance
    摘要:
    As a model system for the synthesis of complex silanediols, N,N-dimethyl 3-(tert-butyldiphenylsilyl)propionamide was prepared and treated with triflic acid, resulting in the removal of one phenyl group and yielding a silanol. Even with a large excess of triflic acid, only a single phenyl group could be removed. This contrasts with a diphenylsilyl group flanked by a pair of amides, for which both phenyl groups are rapidly cleaved. A combination of steric hindrance by the tert-butyl group and lack of a second internal nucleophile appears to limit triflic acid-mediated phenyl hydrolysis from the silicon. (C) 2001 Published by Elsevier Science Ltd.
    DOI:
    10.1016/s0040-4039(01)00576-7
点击查看最新优质反应信息

文献信息

  • C. elegans as a model for inter-individual variation in metabolism
    作者:Bennett W. Fox、Olga Ponomarova、Yong-Uk Lee、Gaotian Zhang、Gabrielle E. Giese、Melissa Walker、Nicole M. Roberto、Huimin Na、Pedro R. Rodrigues、Brian J. Curtis、Aiden R. Kolodziej、Timothy A. Crombie、Stefan Zdraljevic、L. Safak Yilmaz、Erik C. Andersen、Frank C. Schroeder、Albertha J. M. Walhout
    DOI:10.1038/s41586-022-04951-3
    日期:2022.7.21
    Individuals can exhibit differences in metabolism that are caused by the interplay of genetic background, nutritional input, microbiota and other environmental factors1–4. It is difficult to connect differences in metabolism to genomic variation and derive underlying molecular mechanisms in humans, owing to differences in diet and lifestyle, among others. Here we use the nematode Caenorhabditis elegans as a model to study inter-individual variation in metabolism. By comparing three wild strains and the commonly used N2 laboratory strain, we find differences in the abundances of both known metabolites and those that have not to our knowledge been previously described. The latter metabolites include conjugates between 3-hydroxypropionate (3HP) and several amino acids (3HP-AAs), which are much higher in abundance in one of the wild strains. 3HP is an intermediate in the propionate shunt pathway, which is activated when flux through the canonical, vitamin-B12-dependent propionate breakdown pathway is perturbed5. We show that increased accumulation of 3HP-AAs is caused by genetic variation in HPHD-1, for which 3HP is a substrate. Our results suggest that the production of 3HP-AAs represents a ‘shunt-within-a-shunt’ pathway to accommodate a reduction-of-function allele in hphd-1. This study provides a step towards the development of metabolic network models that capture individual-specific differences of metabolism and more closely represent the diversity that is found in entire species. Using differences among strains as a model for inter-individual variation, this paper identifies a conserved metabolicadaptation in C. elegans that compensates for genetic variation.
    个体之间的新陈代谢差异可能是由遗传背景、营养摄入、微生物群和其他环境因素相互作用引起的1-4。由于饮食和生活方式等方面的差异,很难将新陈代谢的差异与基因组变异联系起来,并从中得出人类潜在的分子机制。在这里,我们以线虫秀丽隐杆线虫(Caenorhabditis elegans)为模型,研究个体之间的新陈代谢差异。通过比较三个野生菌株和常用的N2实验室菌株,我们发现已知代谢物和那些以前未知的代谢物的丰度存在差异。后者包括3-羟基丙酸盐(3HP)和几种氨基酸(3HP-AAs)之间的结合物,其中一种野生菌株中的含量要高得多。3HP是丙酸盐分流途径的中间产物,当通过典型的、维生素B12依赖的丙酸盐分解途径的通量受到干扰时,丙酸盐分流途径就会被激活5。我们表明,3HP-AAs的积累增加是由HPHD-1的遗传变异引起的,而3HP是HPHD-1的底物。我们的结果表明,3HP-AAs的产生代表了一种“分流中的分流”途径,以适应hphd-1中功能降低的等位基因。这项研究为开发代谢网络模型迈出了一步,该模型可以捕捉个体特定的代谢差异,并更准确地反映整个物种的多样性。本文以菌株之间的差异为个体差异模型,确定了秀丽隐杆线
  • Studies in silanol synthesis: internal nucleophiles and steric hindrance
    作者:Athanasios Glekas、Scott McN Sieburth
    DOI:10.1016/s0040-4039(01)00576-7
    日期:2001.6
    As a model system for the synthesis of complex silanediols, N,N-dimethyl 3-(tert-butyldiphenylsilyl)propionamide was prepared and treated with triflic acid, resulting in the removal of one phenyl group and yielding a silanol. Even with a large excess of triflic acid, only a single phenyl group could be removed. This contrasts with a diphenylsilyl group flanked by a pair of amides, for which both phenyl groups are rapidly cleaved. A combination of steric hindrance by the tert-butyl group and lack of a second internal nucleophile appears to limit triflic acid-mediated phenyl hydrolysis from the silicon. (C) 2001 Published by Elsevier Science Ltd.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)